

Ⓒ 2023-2025 ADVANTEST Corporation v2.3.0, July 2025
All rights reserved Printed in U.S.A

ACS Real-Time

Data Infrastructure (RTDI)

 User Guide

MANUAL NUMBER G8003-xxxxx

This version includes:

ACS Nexus v3.0.0
ACS Unified Server v2.2.0
ACS Edge Server v3.3.0

ACS Container Hub v3.0.0

v2.3.0

ACS RTDI User Guide

2 v2.3.0, July 2025

Legal Notices
All rights reserved. All text and figures included in this publication are the exclusive property of Advantest Corporation.
Reproduction of this publication in any manner without the written permission of Advantest Corporation is prohibited.
Information in this document is subject to change without notice.

This document contains proprietary information that is protected by copyright. All rights are reserved. No part of this
document may be photocopied, reproduced, or translated to another language without prior written consent of Advantest
Corporation.

Trademarks and Registered Trademarks

 ADVANTEST is a trademark of Advantest Corporation.

 All other marks referenced herein are trademarks or registered trademarks of their respective owners.

ACS RTDI User Guide

v2.3.0, July 2025 3

Revision History
Rev. Date Notes

v1.0.0 August 2023 First Release

v1.1.0 October 2023

Added 3 new advanced control items to section 2.2.2 "Advanced Control"

Added the following sections:

• 2.2.2.2 Variable Control
• 2.2.2.3 Test Item Control
• 2.2.2.4 Activity Control
• 2.5.2 Auto Deploy Mode
• 3.15 Update Client Credentials
• 3.17 Create Application Descriptor
• 3.18 Delete Application Descriptor
• Appendix 2. Python Logger, Result, and Event

Added new items to Table 2-3, "Basic and Advanced Control Commands"

Updated section 2.3.3.5 "class oneapi::Command" to include new advanced
control details.

Updated section 3.14 "Create Client Credentials" to add expiry date feature.

Updated the description for setRegHost().

Appended description of volume_attach option for ContainerConfig class

v1.1.1 October 2023

Updated section 2.1 with additional descriptive details, as follows:
• Acronym descriptions for the real time test cell data types
• Description for EDL
• Reference to Advantest TDC for more info on Application Model and Recipe file
• Updated userdefined.ini content example

Updated Appendix 2, "Python Logger, Result, and Event"

Added Appendix 3, "Application Descriptor Command Line Tool"

v1.2.0 RC December 2023

Added section 3.1 "ACS Container Hub Registration"

Added section 3.2 "Connecting ACS Container Hub to an ACS Unified
Server"

Added section 3.18 "Update Application Descriptor"

Added example code for all the functions in section 6.2.1 for the
containerconfig public functions. Also added new setOption function.

ACS RTDI User Guide

4 v2.3.0, July 2025

v1.2.0 February 2024

Added sections 4.1, 4.2, 4.3, 5.1, 5.2, and 5.3

Updated steps 6, 7, and 8 for "Using Variable Control in SmarTest 8"

Added a SetNewBin setup example (search for "SetNewBin Example")

Added section 3.3.17, "Reset Client Credential"

Added section 4.2.4, "Redundancy"

Added section 5.1.3, "Dynamic Certificates for MTLS"

Added section 8, "ACS RTDI Troubleshooting"

v1.3.0

April 2024

Updated the OneAPI C++ SDK package contents in section 2.3.1, "General
Information" and OneAPI Python SDK package contents in section 2.4.1.

Added MEASURED_SCAN data type and updated DEVICE data type in
Table 2-4 and Table 2-12, "OneAPI Data Types."

Added new data types to section 2.3.3.3, "enum oneapi::DataType" and
section 2.4.3.3, "enum DataType"

Modified the following ACS Nexus data type enums:

• DATA_TYP_MEASURED_FUNCTIONAL
• DATA_TYP_MEASURED_MULTI_PARAM

Added the following ACS Nexus data type enums:

• DATA_TYP_MEASURED_SCAN
• DATA_TYP_DEVICE_PIN
• DATA_TYP_DEVICE_PATTERN

(DATA_TYP_PIN_DATA is replaced by DATA_TYP_DEVICE_PIN)

Added Python 3.10 and 3.11 support for Nexus Python SDK

Added the following Nexus functions:

get_PatternCount() query_FailCycles()
get_PinInfoCount() get_PatternCount()
query_OpSequence() query_PatternLabels()
query_PatternLables() get_PinInfoCount()
query_TotalCycleCount() query_ChannelType()
query_FailCycleCount() query_ChannelName()
query_PatternResults() query_PhysicalName()
query_PatternName() query_LogicalName()
query_PinResults() query_HeadNumber()
query_PinName() query_SiteNumber()

Extensive updates to section 2.5.3, "Non-Auto Deploy Mode"

Modified section 2.5.4, "Container Configuration File"

ACS RTDI User Guide

v2.3.0, July 2025 5

v1.3.0

April 2024

Added section 2.5.5 and section 2.6.3, "Workflow"

Added Certificate Expiration Reminder to Table 2-19, "System Status
Indicators"

Added section 2.10, "FAST-API Support on ACS Edge"

Added section 2.11, "ACS Edge Redundancy Support"

Updated descriptions for Container attributes in section 3.3.18, "Create
Application Descriptor"

Added section 5.1.4, "Multi-Tester Application Support

Modified description for publish-ports and environment options in section
6.2, "Container Config"

Modified Step 1 example data in section 6.5, "Container Deployment
Example"

v1.4.0 July 2024

Added the following sections:

• 2.3.3.7 class oneapi::QueryResponse
• 2.3.3.8 class oneapi::DFFData
• 2.4.3.7 class QueryResponse
• 2.4.3.8 class DFFData
• 2.12 Bi-Directional Communication between TP and RTDI Application
• 2.13 Data Feed Forward
• 5.1.5 Data Feed Forward
• 5.4.1.2 Container Hub Method

Updated section 2.3.1, including Table 2-2

Modified the following under section 2.3.3 C++ API and under section 2.4.3
Python API:

• connect()
• getConnectionState()

Modified section 2.3.4, including Table 2-9

Removed "conf" from package contents in section 2.4.1

Added the following under section 2.4.3 Python API:

• consumeTPSend()
• consumeTPRequest()

Modified section 2.4.4, including Table 2-14

Added edge.containers.volume_attachments to Table 2-17 "images.json
Content Descriptions"

Added Container Status Information and License Status to Table 2-19
"System Status Indicators"

ACS RTDI User Guide

6 v2.3.0, July 2025

v2.0.0 October 2024

Added measurement data to the data type list in section 2.1 and to Table 2-4
“OneAPI Data Types”

Added measurement data functions to the NexusData class

Added the following ACS Nexus functions:

query_TestSuite() query_SequenceName()
query_MeasurementName() query_SequenceBypassed
get_MeasurementName() query_SequenceSites()
get_GroupCount() get_SequenceGroupResults()
query_GroupName() query_SequenceGroupName()
query_GroupBypassed() query_SequenceGroupBypassed()
query_GroupSites() query_SequenceGroupSites()
get_SequenceCount()

Replaced “Test Floor Server” with “ACS Unified Server” in Table 2-19
“System Status Indicators”

Modified Container Hub sections on creating, updating, and deleting
Application Descriptors.

Added the following sections:

ACS Container Hub
3.3.21 "Support for 1:N Applications"
3.3.22 "Viewing 1:N Application Status"

ACS Edge Server
4.2.5 "Remote Service Upgrade"

ACS Unified Server
5.4.3 "1:N Application Descriptors"
5.6 "File Synchronization"
5.7 "Memory Store SDK"

Revised section 8.2 "ACS Unified Server Troubleshooting"

v2.1.0

December 2024

Added the following sections:

ACS Nexus
2.4.3.8 "class DFFData"
2.12.1.2 "NexusTPI for SMT8"
2.12.1.3 "NexusTPI for SMT7"
2.13.1 "Data Writing – Nexus Data"
2.13.2 "Data Writing – Customer Data from the Application"
2.13.3 "Data Reading – By Application"
2.13.4 "Data Writing – Customer Data from Test Program"
2.13.5 "Data Reading – by Test Program"
2.14 "Configurable Nexus Services"

ACS Unified Server
5.9 "Data Feed Forward – Flex"

Appendix 3. "Azure Hosted Container Registry"

New ACS Nexus function: createRawQueryRequest()

ACS RTDI User Guide

v2.3.0, July 2025 7

Updated values in Table 2-9 and Table 2-14 "OneAPI Environment Variable
Description"

Added jsonschema to Python SDK software

Revised all of section 2.4.3.9 "Class DFF"

v2.2.0 March 2025

Added -3 (unknown) and -4 (not supported) as return values for Nexus API
connect() and sendCommand() (C++ and Python)

Added "init" interface to Nexus TPI for SMT 8 (Table 2-21) and
SMT7 (Table 2-23)

Added the following sections:
2.3.3.9 class oneapi::TestCell
2.4.3.10 class TestCell
2.15 Nexus License Check Modes
3.3.21 Multi-User Permissions for Managing App Descriptors or
Organization Project
3.3.22 Using Multi-User Permissions
5.9.4 DFF UI

Added instruction on accessing the Unified Server license server in section
5.2 Licensing

New Data Streaming field (STREAM_ENABLED) added to the Application
Descriptor unified field in section 5.5.3 1:N Application Descriptors

A new restart policy option is added to ContainerConfig class in section
6.2 ContainerConfig

setOption() function is updated to include the new restart policy in section
6.2.1 Public Function

v2.3.0 June 2025

Added the following sections:
3.3.25 Viewing, Creating, and Editing 1:N Application Descriptors
3.3.26 Test Applications for 1:N Application Descriptors
3.3.27 Monitoring – Alert Subscriptions
3.3.28 Replication
5.6 Unified Server Application Testing
5.8 Redis Memory Store SDK for Cross-Cluster Replication

Added a NOTE regarding Advanced Control support for ACS Nexus v3.0.0
to section 2.2.2 Advanced Control

New functions added to section 2.3.3.2 class oneapi::Monitor

Brokers option added to TestFloor_Server in Table 2-13. acs_nexus.ini
Content Descriptions

"Data Structure in JSON Format" and corresponding tables are added to
2.13.3 Data Reading – By Application

Upgrade procedure modified in section 4.2.5 Remote Service Upgrade

ACS RTDI User Guide
Table of Contents

8 v2.3.0, July 2025

Table of Contents

1. Introduction .. 14

2. ACS Nexus .. 15
 Collecting Real Time Test Cell Data ... 15
 Controlling the Test Cell .. 18

 Basic Control ... 18
 Advanced Control .. 18

 OneAPI C++ SDK ... 22
 General Information ... 22
 Usage Scenario ... 24
 C++ API ... 27
 Configuration ... 94

 OneAPI Python SDK ... 95
 General Information ... 95
 Usage Scenario ... 97
 Python API ... 100
 Configuration ... 170

 Supporting Containerized Application on the ACS Edge and ACS Unified
Servers ... 171

 Nexus Configuration File ... 172
 Auto Deploy Mode ... 176
 Non-Auto Deploy Mode (Auto Deploy Mode Disabled) 177
 Container Configuration File .. 179
 Workflow .. 179

 Supporting Application on the Host Controller .. 180
 Nexus Configuration File ... 180
 Application Configuration File .. 181
 Workflow .. 182

ACS RTDI User Guide
Table of Contents

v2.3.0, July 2025 9

 ACS Nexus GUI .. 183
 STDF Replay .. 188
 Data Replay Tool .. 190
 FAST-API Support on ACS Edge .. 191

 Configuration ... 191
 Access FAST-API Service ... 192

 ACS Edge Redundancy Support ... 192
 Usage Cases ... 193
 Configuration ... 193
 Gateway .. 193

 Bi-Directional Communication between TP and RTDI Application 194
 NexusTPI ... 194
 OneAPI .. 205

 Data Feed Forward ... 209
 Data Writing - NexusData .. 209
 Data Writing – Customer Data from the Application 210
 Data Reading – By Application .. 210
 Data Writing – Customer Data from Test Program 214
 Data Reading – by Test Program .. 216

 Configurable Nexus Services .. 218
 Nexus License Check Modes .. 218

3. ACS Container Hub .. 219
 ACS Container Hub Registration .. 219

 Prerequisite ... 219
 Registering myAdvantest Accounts ... 220

 Connecting ACS Container Hub to an ACS Unified Server 224
 Creating Client Credential for Replication .. 224

 ACS Container Hub User Interface ... 227
 Log In to ACS Container Hub .. 227
 Log in to Docker Command Line ... 228

ACS RTDI User Guide
Table of Contents

10 v2.3.0, July 2025

 Docker Build and Push .. 230
 Docker Pull .. 231
 Tag Existing Local Image .. 232
 Project Search ... 233
 Create a New Project ... 235
 Change Project Storage Quota .. 236
 Delete a Project ... 237
 Project Repository and Artifacts .. 238
 Delete Artifact .. 241
 Delete Image Tag .. 242
 Delete Repository .. 243
 Create Client Credentials ... 244
 Update Client Credentials .. 248
 Delete Client Credential ... 250
 Reset Client Credential .. 251
 Create 1:1 Application Descriptor .. 253
 Update 1:1 Application Descriptor ... 257
 Delete 1:1 Application Descriptor .. 259
 Multi-User Permissions for Managing App Descriptors or Organization
Project ... 260
 Using Multi-User Permissions .. 262
 Support for 1:N Applications .. 263
 Viewing 1:N Application Status .. 264
 Viewing, Creating, and Editing 1:N Application Descriptors 265
 Test Applications for 1:N Application Descriptors 267
 Monitoring – Alert Subscriptions .. 272
 Replication ... 275

4. ACS Edge Server ... 277
 ACS Edge Server Operation ... 277

 Operation Overview ... 277

ACS RTDI User Guide
Table of Contents

v2.3.0, July 2025 11

 Monitoring the ACS Edge Server ... 278
 ACS Edge Server Features ... 280

 Security .. 280
 Accessibility ... 280
 Functionality .. 281
 Redundancy .. 283
 Remote Service Upgrade .. 285

 ACS Edge Server Specifications ... 286

5. ACS Unified Server .. 287
 Container Registry .. 288
 Licensing ... 288
 Monitoring ... 290

 Logs ... 291
 Application Results .. 293
 System Metrics .. 294
 Events .. 295
 Monitoring Dashboards .. 297

 Dynamic Certificates for MTLS ... 298
 Application Support ... 299

 Container Hub Method ... 299
 SFTP Method .. 299
 1:N Application Descriptors ... 304

 Unified Server Application Testing .. 306
 Customer API via CLI .. 306

 File Synchronization .. 308
 Overview .. 308
 acsdata-cli Command Line Tool Requirement and Path............................ 309
 acsdata-cli Commands .. 310

 Redis Memory Store SDK for Cross-Cluster Replication 313
 Using the SDK in your Application ... 313

ACS RTDI User Guide
Table of Contents

12 v2.3.0, July 2025

 Configuring Replication .. 313
 Resolving Conflicts from Concurrent Redis Key Updates Across Clusters 313
 Impact of Network Disruptions between Cross-Site UnifiedServer
Clusters ... 314

 Allowed Redis Value Size .. 314
 MemoryStore Class Methods .. 314

 Data Feed Forward ... 326
 Overview .. 326
 Data CLI Tool Requirement ... 327
 Data CLI Commands ... 327
 DFF UI ... 330

6. C++ Client API Reference .. 336
 ACSEdgeConn .. 336

 Public Functions .. 336
 ContainerConfig .. 355

 Public Function .. 357
 ACSEDGEcode ... 361
 Establishing Connection to the ACS Edge Server .. 365
 Container Deployment Example ... 367

7. ACS RTDI Troubleshooting ... 371
 ACS Edge Server Troubleshooting ... 372
 ACS Unified Server Troubleshooting .. 376
 ACS Container Hub Troubleshooting .. 377

 IP Whitelisting .. 377

Appendix 1. Python Logger, Result, and Event 378
A1.1 Logger .. 378
A1.2 Result ... 378
A1.3 Event .. 379

ACS RTDI User Guide
Table of Contents

v2.3.0, July 2025 13

Appendix 2. Application Descriptor Command Line Tool 380
A2.1 acs-application Command Line Tool Requirements and Path 380
A2.2 Application Descriptor Format .. 381

A2.2.1 Application Descriptor Selector ... 382
A2.3 acs-application Command Line Tool General Information 384

A2.3.1 Authentication ... 385
A2.3.2 Trusted TLS Certificates .. 386

A2.4 Command Usage and Examples .. 386
A2.4.1 List Command ... 386
A2.4.2 Get Command ... 387
A2.4.3 Query Command ... 388
A2.4.4 Validate Command .. 389
A2.4.5 Create Command .. 389
A2.4.6 Delete Command .. 389
A2.4.7 Update Command ... 390

A2.5 Exit Codes .. 390

Appendix 3. Azure Hosted Container Registry 391

ACS RTDI User Guide
Chapter 1 Introduction
Collecting Real Time Test Cell Data

14 v2.3.0, July 2025

1. Introduction
The ACS Real-time Data Infrastructure is a comprehensive high-value platform that collectively delivers improved yield,
quality, and time to market. At its core, the platform acts as a communication backplane for the test floor, facilitating
rapid and accurate information exchange. With support for online edge computing/analytics, the platform enables real-
time adaptive decision making within and between touchdown operations, allowing for optimized performance.

The ACS RTDI platform consists of the following products:

ACS Nexus
A software solution integrated into the host workstation to provide a standard interface for real time test cell data
streaming and inline equipment control between equipment and external clients across Advantest platforms.

ACS Container Hub
The artifact repository and distribution hub for Advantest cloud workloads, used for storage and distribution of container
images.

ACS Edge Server
A high-performance edge compute and analytics server that, when integrated into a test cell, enables ultra-fast
algorithmic (AI, machine learning, and statistical) decision making during test execution.

ACS Unified Server
A multi-purpose server that supports application service, database storage, and true Zero Trust Security for the test floor.

Figure 1-1. ACS RTDI Platform Overview

ACS RTDI User Guide
Chapter 2 ACS Nexus

Collecting Real Time Test Cell Data

v2.3.0, July 2025 15

2. ACS Nexus
The ACS Nexus is the software solution that provides a standard interface for real-time test cell data streaming and inline
equipment control between equipment and external clients across all Advantest platforms.

NOTE 1: ACS Nexus automatically starts and runs perpetually on the Host Workstation after installation. If an ACS
Nexus restart is needed, see Restarting ACS Nexus.

NOTE 2: Only one user at a time can run ACS Nexus on the same Host Workstation.

 Collecting Real Time Test Cell Data
Comprehensive real time test cell data collection enables applications to do data analysis in real time. ACS Nexus
provides real time data to the ACS Edge Server per test item level. Real time data is provided through OneAPI after test
start of the first device in a lot.

NOTE: For SmarTest 7, there are multiple ways to start production. Nexus support for production start is as follows:

Supported: Application Model File
Unsupported: TCCT
Not Verified: Workorder and BLC client

Real time data includes the following:

Measured
Value Data

Parametric test data
Multiple parametric test data
Functional test data
Scan test data

Production
Event Data

Lot Start Data – Master Information Record (MIR) / Site Description Record (SDR)
Wafer Start Data – Wafer Information Record (WIR) / Wafer Configuration Record (WCR)
Test Start Data – Part Information Record (PIR)
Test Flow Start Data
Test Flow End Data
Test End Data – Part Results Record (PRR)
Wafer End Data – Wafer Result Record (WRR)
Lot End Data – Master Results Record (MRR)

Device Data
Device Configuration – Basic information / Pin configuration file name / Channel attribute file name
Bin list – both soft bin and hard bin
Pin data
Pattern data

User Defined
Data

Only support user defined variables in Recipe file (SmarTest 8) or Application Model file (SmarTest 7)
Only support user defined variables outside the device level in SmarTest 8 or SmarTest 7
Max support variable count is 100
Can be configurable to select needed data

Measurement
Data

Parallel group (only applies to SMT version 8.7.0 and greater (refer to Parallel Group Data)
Operating sequence call (only defined for SmartBurst)

ACS RTDI User Guide
Chapter 2 ACS Nexus
Collecting Real Time Test Cell Data

16 v2.3.0, July 2025

To automatically collect Measured Value data, Production Event data, and Device data, the only requirement is to ensure
that EDL (Event Data Logging - the default real time data stream provided by 93K Smartest) is fully enabled during
production. Collecting User Defined data requires setting up variables. Follow the steps below to setup variables for
collecting User Defined data.

1. Set variables in the Recipe (SmarTest 8) or in the Application Model file (SmarTest 7). For more information on
the Recipe file and Application Model file, refer to the Advantest Technical Documentation Center (TDC).

NOTE: In the user defined data examples below, on the left side is the variable name which ACS Nexus
provided to the application. On the right side is the variable name defined by the user.

Example Recipe File for SmarTest 8:
<TestProgram action="ACTIVATE" name="inco4_v255_online/Inco4.prog" />
<TestProgram action="LOAD" />
<Assignment><Set name="ROOT_PATH" value="/home/Elijah/smt/inco4_v255_online" />
</Assignment>
<Assignment>
 <Set name="DATALOG_RATE" value = "10" />
 <Set name="DIFFUSION_CENTER" value = "10" />
 <Set name="PROCESS_CODE" value = "10" />
 <Set name="LOT_SIZE" value = "10" />
</Assignment>
<!-- Create and connect PH session with specified driver -->
<EquipmentControl functions="START_PHCONTROL">
 <!-- Currently, the first input must GENERIC_93K_DRIVER -->
 <In>GENERIC_93_DRIVER</In>
 <In>{$ROOT_PATH}/GenericProber/Tel/</In>
 <In>{$ROOT_PATH}/GenericProber/Tel/config/P12-GPIB-Prober-4-die-256-bin.cfg</In>
 <!-- the wafer description file can be specified in the fourth parameter -->
 <In>{$ROOT_PATH}/wafer_15x15</In>
</EquipmentControl>

<!--Active, Load, Bind and Start test program -->
<TestProgram action="RUN" name="inco4_v255_online/Inco4.prog" lotType="WAFER_TEST/>

<!-- To setup some detail lot information in a sub-recipe file -->
<SubRecipe path="sub.xml" />

Example Application Model File for SmarTest 7:
{ WAFER [(wafermap),({wafer_id}] wafer:

 ACTIONS
 dummy = PROB_HND_CALL (get wafer);
 -- * wafer_id = ELEMENT_OF_PARAM_LIST ({cassette_list}) / REGEXP (int);
 * wid = AUTOINCREMENT;
 * wafer_id = CONST_INPUT({Lot_id}.{wid});
 STDF_FILE = CONST_INPUT(/tmp/AA/aa_{Lot_id}_{wafer_id}_{Start_time}.stdf);

 * DATALOG_RATE = CONST_INPUT (vws01);
 * DIFFUSION_CENTER = CONST_INPUT (vws02);
 * PROCESS_CODE = CONST_INPUT (vws01);
 * LOT_SIZE = CONST_INPUT (vws02);

 LOG_SPECIFICATION
 RESULT_LOG = ON;
 NEW_RESULT_FILE = ON; (/tmp/{Lot_id}.wfrSum{wafer_id}.gdf);
 POST_PROCESSING = D_BRIDGE_CALL (send_to_dbase /tmp/(Lot_id}.wfrSum{wafer_id}.gdf);

 { DEVICE die:
 ACTIONS
 -- SET_TEMPERATURE({Temperature});
 PROB_HND_CALL (get_die);

User Defined Data

User Defined Data

ACS RTDI User Guide
Chapter 2 ACS Nexus

Collecting Real Time Test Cell Data

v2.3.0, July 2025 17

2. Configure the User Defined data to collect in the Nexus configuration file. The path for the user defined data is
/opt/acs/nexus/conf/collect/userdefined.ini.

userdefined.ini Content Example:

[SMT7]

datalog_rate = DATALOG_RATE

diffusion_center = DIFFUSION_CENTER

process_code = PROCESS_CODE

lot_size = LOT_SIZE

[SMT8]

datalog_rate = DATALOG_RATE

diffusion_center = DIFFUSION_CENTER

process_code = PROCESS_CODE

lot_size = LOT_SIZE

3. Use OneAPI to collect the User Defined data from ACS Nexus. For C++ interface, refer to page 40 and 46. For
Python interface, refer to page 112 and 120.

Parallel Group Data (additional information)
Ensure bypass logging is enabled in the test program:

context.datalog().enableBypassInfoLogging(true);

ACS RTDI User Guide
Chapter 2 ACS Nexus
Controlling the Test Cell

18 v2.3.0, July 2025

 Controlling the Test Cell
ACS Nexus provides basic and advanced actions during production, enabling real time controls from the client software
(the user-developed application based on OneAPI).

 Basic Control
NOTE: To enable basic control, production should be executed by Recipe (SmarTest 8) or by Application Model

(SmarTest 7). Refer to the Advantest Technical Documentation Center (TDC) for additional information.

The basic control actions include Pause and Stop. Both these actions can be sent at any time, but they can only be
executed after test flow execution and device binning.

• PAUSE
Executes a real-time pause during wafer testing or final testing when production issues are identified by an
organization's applications. Follow-up actions after the pause are handled by the organization (for example,
automatic action by other tools or manual action by an operator).

• STOP
Executes a real-time stop of wafer testing or final testing when production issues are identified by an
organization's applications

 Advanced Control
NOTE: ACS Nexus v3.0.0 does not support Advanced Control features on the V93K RHEL 9 platform.

The following Advanced Control features provide additional control within the test cell environment:

• Bin Control
• Site Activity Control

These Advanced Control functions are supported in SmarTest 7 and SmarTest 8 as indicated in the table below.

 SmarTest 7 SmarTest 8

 Final Test Wafer Sort Final Test Wafer Sort

BinControl    

SiteActivityControl  -  -

ACS RTDI User Guide
Chapter 2 ACS Nexus

Controlling the Test Cell

v2.3.0, July 2025 19

 Bin Control
Bin Control is an advanced control action which overrides binning information to be sent to a prober or handler with the
altered bin, which is directed by binning controller applications such as DPAT or other outlier detection applications. All
binning operations are logged into a dedicated log file for future reference. The log file follows the format indicated
below.

NOTE: The default path for the below log file is /binning_hist_files/ binning_hist_<YYYYmmdd_HHMMSS.csv.

Line format: <TIMESTAMP> "," <DEVICE_ID> "," <ORIG_BIN> "," <ALT_BIN>
<TIMESTAMP>: <YYYYmmddHHMMSS>
<DEVICE_ID> : <DEVICE_ID_WS> || <DEVICE_ID_FT>
<DEVICE_ID_WS> : "W" <X> "," <Y>
<DEVICE_ID_FT> : "P" <INDEX_COUNT> "." <SITE>

The Bin Control feature is available only for using a prober/handler driver which is dedicated for ACS Nexus. Other
restrictions include:

• The EDL stream will not be changed by this feature.
• BIN Control request is valid after testflow start.
• BIN ID "-1" cannot be set through BinControl.

For OneAPI Bin Control details, see C++ class Command or Python class Command.

 Test Program Configuration (Bin Control)
This feature works with the equipment driver (located in /opt/acs/nexus/ph_libs). The equipment driver should be
installed before using this feature. For instructions on how to install this driver, refer to section 2.4 of the
ACS RTDI Installation Guide.

To use this feature:

1. Specify the drivers in a test program if using “GenericHandler.”

2. Check that the driver objects (which will be used in production) are located in /opt/acs/nexus/ph_libs/

3. Modify the description for the line in "prod" as follows: Hp_lib: /opt/acs/nexus/ph_libs/GenericHandler.

ACS RTDI User Guide
Chapter 2 ACS Nexus
Controlling the Test Cell

20 v2.3.0, July 2025

 Bin Control Configuration
The default bin control functions can be configured using bincontrol.cfg. This path for this file is
/opt/acs/nexus/conf/bincontrol.cfg.

Advanced bin control configurations listed in Table 2-1 can be specified through OneAPI command. Refer to class
oneapi::Command for C++, or class Command for Java.

Table 2-1. Advanced Bin Control Configurations

Parameters Type and [Default Value] Description

Enabled Integer [0] 0 or 1 can be specified (1 is enabled for this feature).
Timeout Sec [1] The number of seconds to detect a timeout.
TimoutBin Integer [9] The bin number if timeout is detected.

NOTE: TimeoutAction should be TimeoutBin.

TimeoutAction Fixed String [TimeoutBin] The timeout action can be Abort, OriginalBin, or
TimeoutBin.

• Abort: Aborts the production.
• OriginalBin: Use an original bin if timeout is

detected.
• TimeoutBin: Use binnumber specified with

"TimeoutBin" if timeout is detected.

BinningHistoryDir String for directory path
[]

The log file path for binning history.

IllBinAction Fixed String [Abort] Defines the behavior if an illegal bin is specified. The
action can be Abort or AltBin.

• Abort: Abort the production.
• AltBin: Use binnumber specified with "IllAltBin" if

the dedicated bin is out of the specified range. The
range is specified by MinValidAltBin and
MaxValidAltBin

IllAltBin* Integer [-1] The bin number if the specified bin is out of range.
MinValidAltBin* Integer [-1] The minimum bin number.
MaxValidAltBin* Integer [-1] The Maximum bin number.

* Even if IllAltBin is inside the range specified by MinValidAltBin and MaxValidAltBin, the driver may detect out of range based on
the driver’s configuration rules.

ACS RTDI User Guide
Chapter 2 ACS Nexus

Controlling the Test Cell

v2.3.0, July 2025 21

 Site Activity Control
Site Activity Control is an advanced control action that activates/deactivates test sites in real time during lot test
execution. This feature operates in one of two modes:

• Synchronous mode
Driver waits for the “SiteActivityControl Set” command to execute during the timeout period. If a timeout occurs,
the driver takes a predefined action.

• Asynchronous mode
Driver does not wait for the “SiteActivityControl Set” command to run. If the command is not executed before the
test starts, lot execution will continue.

ACS RTDI User Guide
Chapter 2 ACS Nexus
OneAPI C++ SDK

22 v2.3.0, July 2025

 OneAPI C++ SDK
OneAPI is the standard bi-directional communication interface that enable containerized/non-containerized applications
to consume real time data from (and send control command to) ACS Nexus.

An application developer can use OneAPI to develop an application to consume the real time data and send control
instructions during production testing. ACS Nexus invokes a callback function of the containerized application per event.

In this version of OneAPI, C++ SDK and Python (3.9, 3.10 and 3.11) SDK are supported. This section describes the
usage of OneAPI C++ SDK.

 General Information
Package Contents
OneAPI C++ SDK provides programming interfaces in C++ / C++11 standard for the user to develop applications. All
contents (see below) are packaged in a tar.gz file.

oneAPI_cpp

|-- Dockerfile.example
|-- build_base_image.sh
| |-- oneAPI_conf.ini
|-- examples
| |-- main.cpp
| |-- makefile
| |-- sampleMonitor.cpp
| |-- sampleMonitor.h
|-- include
| |-- rapidjson
| |-- OneAPI.h
| |-- OneAPI_AppInfo.h
| |-- OneAPI_Command.h
| |-- OneAPI_NexusData.h
| |-- OneAPI_ServerInfo.h
| |-- OneAPI_TestCell.h
| |-- OneAPI DFFData.h
|-- lib
| |-- liboneAPI.so

ACS RTDI User Guide
Chapter 2 ACS Nexus

OneAPI C++ SDK

v2.3.0, July 2025 23

Table 2-2. OneAPI C++ Package Content Descriptions

Content Description

Dockerfile.example This file provides a reference for users on how to build a OneAPI Application image
based on the base image. Users need to rewrite Dockerfile according to their actual
situation. Refer to the comments in this file for specific rewriting methods.

build_base_image.sh This script provides a reference for users on how to build an image with Dockerfile.

examples This folder includes example code that demonstrates the use of OneAPI C++ for
developers. This folder also contains the makefile used for compilation, which developers
can use as a reference.

include This folder contains all the header files provided by OneAPI C++ and describes the
declarations of all interfaces and classes. When developers use OneAPI, all files in this
folder must be included.
This folder also provides the third-party library "Rapidjson" to help customers parse the
DFF data Json string (for customers who use the DFF function).

lib This folder contains all library files provided by OneAPI C++. Developers need to link
these files for compilation and include them in the application release package or image.

Environment Requirements
Users can develop containerized applications running on the ACS Edge Server or containerized/non-containerized
applications running on a test floor server that is based on OneAPI C++ SDK. For both scenarios, specific environment
conditions are required, as noted below.

• Application Development Environment
Supported OS: Red Hat 7 and CentOS 7
Required Software: C++ compiler

• Application Operating Environment
A successful connection at least needs to ensure that the network between Application Operating environment
and ACS Nexus operation environment is enabled, and other dependent guarantees, such as ports availability,
firewall permission, etc.

ACS RTDI User Guide
Chapter 2 ACS Nexus
OneAPI C++ SDK

24 v2.3.0, July 2025

 Usage Scenario

Basic and Advanced Test Cell Control

Table 2-3. Basic and Advanced Control Commands

Command Description

PAUSE PAUSE is a basic control command that provides real-time pause of wafer testing or
final testing when user applications identify production issues. Actions taken after a
pause are determined by the user (for example, automatic actions performed by other
tools or manual action by the operator).

STOP STOP is a basic control command that provides real-time stop of wafer testing or
final testing when user applications identify production issues.

Bin Control Bin Control is an advanced control command:

• I/F 1: SetNewBin
parameter: New bin of each site

• I/F 2: SetNewBinConfig
parameter: Enabled flag, Timeout, etc.

NOTE: SetNewBinConfig should be executed sometime between Lot Start
and Start of the first touchdown.

Site Activity Control Site Activity Control is an advanced control command:

• I/F 1: SiteActivityControl Set
parameter: Site name and value

• I/F 2: SiteActivityControl Config
parameter: Activated flag, Timeout, TimoutAction, Sync, StatusQuery

ACS RTDI User Guide
Chapter 2 ACS Nexus

OneAPI C++ SDK

v2.3.0, July 2025 25

Real Time Test Cell Data Collection
Comprehensive real time test cell data collection enables applications to perform data analysis in real time. Below is a list
of OneAPI data types and a brief description of information that can be collected for each data type.

NOTE: The collected information provided for each data type in the list below is not comprehensive. For a complete list
of information that is collected, refer to class oneapi::NexusData.

Table 2-4. OneAPI Data Types

Data Type Information Collected

PRODUCTION_LOTSTART Lot Start event includes the following information:
• Lot start time
• Lot ID, Sublot ID
• Test type
• Site list
• Prober/Handler, LB

. . .

PRODUCTION_LOTEND Lot End event includes the following information:
• Lot complete time
• Lot ID

. . .

PRODUCTION_WAFERSTART Wafer Start event includes the following information:
• Wafer start time
• Wafer ID
• Wafer layout information

. . .

PRODUCTION_WAFEREND Wafer End event includes the following information:
• Wafer complete time
• Wafer ID

. . .

PRODUCTION_TESTSTART Test Start event includes the following information:
• Test start time
• Site list

PRODUCTION_TESTEND Test End event includes the following information:
• Test complete time
• Bin result of each site
• Part ID of each site
• X/Y Coordinates of each site
• Test time

. . .

PRODUCTION_TESTFLOWSTART Test Flow Start event includes the following information:
• Test flow start time
• Test flow name

ACS RTDI User Guide
Chapter 2 ACS Nexus
OneAPI C++ SDK

26 v2.3.0, July 2025

Data Type Information Collected

PRODUCTION_TESTFLOWEND Test Flow End event includes the following information:
• Test flow end time
• Test flow name

MEASURED_PARAMETRIC Parametric Test Result event includes:
• Test method information: number, name, lo/hi limit, unit
• Result of each site: pass/fail, measured value, etc.

. . .

MEASURED_FUNCTIONAL Functional Test Result event includes:
• Test method information: number, name
• Result of each site: pass/fail, cycle count, fail-pins etc.

MEASURED_MULTI_PARAM Multi-Parametric Test Result event includes:
• Test method information: number, name, lo/hi limit, unit
• Multiple measured values of each site

. . .

MEASURED_SCAN Scan Test Result event includes:
• Test method info: number
• Result of each Site: total cycle count, fail cycle count
• Result of each Pattern: name, pins information
• Result of each Pin: name, failing cycles

 …

DEVICE Device data includes:
• Test Program info: name, path, pin config file etc.
• Bin table: soft-bin, hard-bin
• Pin data: index, type, name, number etc.
• Pattern data: index, name, pattern files etc.

USERDEFINED User Defined data includes:

• User specified variable name and its value

DATALOGTEXT Datalog Text data includes:
• Datalog text time stamp
• Datalog text expression

MEASUREMENT Measurement Data includes:
• Measurement name
• The execution information of parallel groups
• The execution information of operating sequence calls

ACS RTDI User Guide
Chapter 2 ACS Nexus

OneAPI C++ SDK

v2.3.0, July 2025 27

 C++ API

 class oneapi::Interface
This is a set of static functions which are used for communication between the user application and ACS Nexus. During
the lifecycle of the application, no object of this class needs to be generated.

static int connect(const AppInfo&, bool NexusDataEnabled = true, bool TPServiceEnabled =
false);

Description Initiate the request to connect to ACS Nexus. Typically, the application only needs to input
AppInfo.

Connection must be established before sending control commands or receiving data.

Parameter Input:

• Information of the application
• Whether to enable Nexus Data Streaming and Control
• Whether to enable TPService for communication wwith NexusTPI

Return 0 – initial connection succeeded

-1 – failed to enable Nexus Data Streaming and Control

-2 – failed to enable TPService

-3 – unknown location

-4 – not support

NOTES:

The return value 0 does not mean a connection with ACS Nexus has been established.

Another interface getConnectionState() can provide the current connection state of the
command channel.

For a return value of -1, a possible reason could be failed to connect to nexus-broker.

For a return value of -2, a possible reason could be TPService port is occupied. (the default
TPService port is 21122).

For a return value of -3, a possible reason could be OneAPI runs in an unknown location.

For a return value -4, a possible reason could be OneAPI does not support the corresponding
feature in the current location.

For any exception case, all enabled connections will be disconnected.

ACS RTDI User Guide
Chapter 2 ACS Nexus
OneAPI C++ SDK

28 v2.3.0, July 2025

static int disconnect();

Description Disconnects from ACS Nexus.

Return 0 disconnect succeeded
-1 disconnect failed

static void registerMonitor(Monitor*);

Description Registers the event monitor to receive real-time data through a callback function. For additional
details, refer to Class oneapi::Monitor.

Return Input:

Pointer of the event monitor object

static void getConnectionState(int &cmdChannel);

Description Get the connection status of the command channel.

For each channel, the status value is 0 only when the current status is established, and
communication is available. Otherwise, the status value is – 1.

The application should determine whether the related API can be executed according to the
connection state. For example, when sending a control command, if the status of the
command channel is not 0, the command will not be sent to ACS Nexus.

Parameter Output:

The status of command channel (for sending command to ACS Nexus).

static int sendCommand(const TestCell&, const Command&);

Description Send the command to the connected ACS Nexus.

The return value of this interface indicates whether the action of sending command is successful.
ACS Nexus will execute the command asynchronously after receiving the command.

Parameter Input:

TestCell information (refer to class TestCell)

Command information (refer to class oneapi::Command)

Return 0 command successfully sent to ACS Nexus

-1 command failed to send to ACS Nexus
-3 unknown location
-4 not support

ACS RTDI User Guide
Chapter 2 ACS Nexus

OneAPI C++ SDK

v2.3.0, July 2025 29

 class oneapi::Monitor
This base class provides functions to consume ACS Nexus data. Application developers must inherit it and override the
consumeData function, then write their own logic with the received data.

virtual void consumeData(const oneapi::TestCell&, oneapi::NexusData&)

Description This is a pure virtual function that needs to be inherited and overridden. As a callback
function, it will be triggered every time ACS Nexus data arrives.

NOTE 1: When the function is triggered, the thread will be blocked. It cannot be triggered
again until the callback function completes its processing logic and returns.
Therefore, attention should be given to the efficiency of processing or
consideration given to implementing asynchronous processing in the code.

NOTE 2: You must call the corresponding get and query interfaces inside this function and
save the values, otherwise the data will be cleared.

Parameter • TestCell information (refer to class TestCell)
• ACS Nexus data (refer to Class oneapi::NexusData)

virtual void consumeTPSend(const oneapi::TestCell& tc, const std::string& data)

Description This function must be inherited and overridden. As a callback function, it will be triggered
every time the test program initiates a request via NexusTPI.

NOTE: When the function is triggered, the thread will be blocked. It cannot be triggered
again until the callback function completes its processing logic and returns.
Therefore, attention should be given to the efficiency of processing or consideration
given to implementing asynchronous processing in the code.

Parameter • TestCell information (refer to class TestCell)
• Data is string type.

virtual std::string consumeTPRequest(const oneapi::TestCell& tc, const std::string&
request)

Description This function must be inherited and overridden. As a callback function, it will be triggered
every time the test program initiates a request via NexusTPI.

NOTE: When the function is triggered, the thread will be blocked. It cannot be triggered
again until the callback function completes its processing logic and returns.
Therefore, attention should be given to the efficiency of processing or consideration
given to implementing asynchronous processing in the code.

Parameter • TestCell information (refer to class TestCell)
• Request is string type in JSON format.

Return string: After handle request returns your response to NexusTPI.

ACS RTDI User Guide
Chapter 2 ACS Nexus
OneAPI C++ SDK

30 v2.3.0, July 2025

 enum oneapi::DataType

Description Indicate the type of ACS Nexus data.

• DATA_TYP_PRODUCTION_LOTSTART = 0
• DATA_TYP_PRODUCTION_WAFERSTART = 1
• DATA_TYP_PRODUCTION_TESTSTART = 2
• DATA_TYP_PRODUCTION_TESTEND = 3
• DATA_TYP_PRODUCTION_WAFEREND = 4
• DATA_TYP_PRODUCTION_LOTEND = 5
• DATA_TYP_MEASURED_PARAMETRIC = 6
• DATA_TYP_MEASURED_FUNCTIONAL = 7
• DATA_TYP_MEASURED_MULTI_PARAM = 8
• DATA_TYP_DEVICE = 9
• DATA_TYP_USERDEFINED = 10
• DATA_TYP_FILE = 11
• DATA_TYP_PRODUCTION_TESTFLOWSTART = 15
• DATA_TYP_PRODUCTION_TESTFLOWEND = 16
• DATA_TYP_DATALOGTEXT = 17
• DATA_TYP_IDENTIFICATION = 18
• DATA_TYP_DEVICE_PIN = 19
• DATA_TYP_MEASURED_SCAN = 20
• DATA_TYP_DEVICE_PATTERN = 21
• DATA_TYP_MEASUREMENT = 22

ACS RTDI User Guide
Chapter 2 ACS Nexus

OneAPI C++ SDK

v2.3.0, July 2025 31

 class oneapi::NexusData
Each time the callback function consumeData is triggered, a reference to the NexusData object will be passed in as a
parameter. Detailed values can be obtained by calling the member functions of this class.

NOTE: The corresponding member functions must be called according to the type of data to obtain the current valid
value.

[Production Event] Start of Lot
oneapi::DataType DATA_TYP_PRODUCTION_LOTSTART
Occurs: Once at the beginning of the first touchdown per LOT
Contains: All the global information for this LOT

Member Function Return Value(s) Description

int32 get_Timezone(); The time zone where ACS Nexus is running
uint64 get_SetupTime(); Date and time when the test program was started (in microseconds)
uint64 get_TimeStamp(); Date and time when the first part was tested (in microseconds)
uint32 get_StationNumber(); Tester station number
string get_ModeCode(); Test mode code
string get_RetestCode(); Lot retest code
string get_ProtectionCode(); Data protection code
uint32 get_BurnTimeMinutes(); Burn-in time (in minutes)
string get_CommandCode(); Command mode code of the tester
string get_LotId(); Lot ID
string get_PartType(); Part type or product ID
string get_NodeName(); Hostname of the tester system controller
string get_TesterType(); Tester type
string get_JobName(); Test program name
string get_JobRevision(); Test program revision number
string get_SublotId(); Sublot ID
string get_OperatorName(); Operator name or ID at setup time
string get_TesterosType(); Tester software type
string get_TesterosVersion(); Tester software version number
string get_TestType(); Type of Lot (PACKAGE_TEST / WAFER_TEST)
string get_TestStepCode(); Test phase or step code
string get_TestTemperature(); Test temperature
string get_UserText(); User-defined text
string get_AuxiliaryFile(); Name of auxiliary data file
string get_PackageType(); Package type
string get_FamilyId(); Product family ID
string get_DateCode(); Date code
string get_FacilityId(); Test facility ID
string get_FloorId(); Test floor ID

ACS RTDI User Guide
Chapter 2 ACS Nexus
OneAPI C++ SDK

32 v2.3.0, July 2025

string get_ProcessId(); Fabrication process ID
string get_OperationFreq(); Operation frequency or step
string get_SpecName(); Test specification name
string get_SpecVersion(); Test specification version number
string get_FlowId(); Testflow ID
string get_SetupId(); Test setup ID
string get_DesignRevision(); Device design revision
string get_EngineeringLotId(); Engineering lot ID
string get_RomCode(); ROM code ID
string get_SerialNumber(); Tester serial number
string get_SupervisorName(); Supervisor name or ID
uint32 get_HeadNumber(); Test head number
uint32 get_SiteGroupNumber(); Site group number (station number)
uint32 get_SiteCount(); Number of active sites described in this record
vector<uint32> get_TotalHeadSiteList(); Array of test site numbers with head information
string get_ProberHandlerType(); Handler or prober type
string get_ProberHandlerId(); Handler or prober ID
string get_ProbecardType(); Probe card type
string get_ProbecardId(); Probe card ID
string get_LoadboardType(); DUT board type
string get_LoadboardId(); DUT board ID
string get_DibType(); DIB board type
string get_DibId(); DIB board ID
string get_CableType(); Interface cable type
string get_CableId(); Interface cable ID
string get_ContactorType(); Handler contactor type
string get_ContactorId(); Handler contactor ID
string get_LaserType(); Laser type
string get_LaserId(); Laser ID
string get_ExtraEquipType(); Extra equipment type
string get_ExtraEquipId(); Extra equipment ID

ACS RTDI User Guide
Chapter 2 ACS Nexus

OneAPI C++ SDK

v2.3.0, July 2025 33

[Production Event] End of Lot
oneapi::DataType DATA_TYP_PRODUCTION_LOTEND
Occurs: Once at the ending of the last touchdown per LOT
Contains: Information that compliments the Lot

Member Function Return Value Description

uint64 get_TimeStamp(); Date and time last part of the lot was tested (in microseconds)
string get_DisPositionCode(); Lot disposition code
string get_UserDescription(); Lot description supplied by the user
string get_ExecDescription(); Lot description supplied by the exec

[Production Event] Start of Wafer
oneapi::DataType DATA_TYP_PRODUCTION_WAFERSTART
Occurs: Once at the beginning of the first touchdown per WAFER
Contains: All the configuration information for the tested wafer

Member Function Return Value Description

float get_WaferSize(); Diameter of wafer in WF_UNITS
float get_DieHeight(); Height of die in WF_UNITS
float get_DieWidth(); Width of die in WF_UNITS
uint32 get_WaferUnits(); Unit for wafer and die dimensions
string get_WaferFlat(); Orientation of wafer flat
int32 get_CenterX(); X-coordinate of center die on wafer
int32 get_CenterY(); Y-coordinate of center die on wafer
string get_PositiveX(); Positive X-direction of wafer
string get_PositiveY(); Positive Y-direction of wafer
uint32 get_HeadNumber(); Test head number
uint32 get_SiteGroupNumber(); Site group number
uint64 get_TimeStamp(); Date and time when the first part of wafer was tested (in

microseconds)
string get_WaferId(); Wafer ID

ACS RTDI User Guide
Chapter 2 ACS Nexus
OneAPI C++ SDK

34 v2.3.0, July 2025

[Production Event] End of Wafer
oneapi::DataType DATA_TYP_PRODUCTION_WAFEREND
Occurs: Once at the ending of the last touchdown per WAFER
Contains: The result information for the tested wafer

Member Function Return Value Description

uint32 get_HeadNumber(); Test head number
uint32 get_SiteGroupNumber(); Site group number
uint64 get_TimeStamp(); Date and time when the last part of wafer was tested (in

microseconds)
uint32 get_TestedCount(); Number of tested parts
uint32 get_RetestedCount(); Number of retested parts
uint32 get_GoodCount(); Number of tested parts that have passed
string get_WaferId(); Wafer ID
string get_UserDescription(); Wafer description supplied by user
string get_ExecDescription(); Wafer description supplied by exec

[Production Event] End of Test
oneapi::DataType DATA_TYP_PRODUCTION_TESTEND
Occurs: Once at the ending of each touchdown
Contains: Site, part, and result information for this touchdown

Member Function Return Value Description

uint64 get_TimeStamp(); Date and time when the part completes test (in microseconds)
uint32 get_ResultCount(); Count of test result
uint32 query_HeadSite(uint32 index); Test site number with head information
string query_PartFlag(uint32 index); Part information flags
uint32 query_SBinResult(uint32
index);

Software bin

uint32 query_HBinResult(uint32
index);

Hardware bin

int32 query_XCoord(uint32 index); Wafer X-coordinate
int32 query_YCoord(uint32 index); Wafer Y-coordinate
uint32 query_TestTime(uint32 index); Elapsed test time in microseconds
string query_PartId(uint32 index); Part identification
string query_PartText(uint32 index); Part description text

ACS RTDI User Guide
Chapter 2 ACS Nexus

OneAPI C++ SDK

v2.3.0, July 2025 35

[Production Event] Start of Test
oneapi::DataType DATA_TYP_PRODUCTION_TESTSTART
Occurs: Once at the beginning of each touchdown
Contains: Site information for this touchdown

Member Function Return Value Description

uint64 get_TimeStamp(); Date and time when the part starts to test (in microseconds)
uint32 query_HeadSite(uint32 index); Test site number with head information
int32 query_XCoord(uint32 index); Wafer X-coordinate
int32 query_YCoord(uint32 index); Wafer Y-coordinate

[Production Event] Start of Test Flow
oneapi::DataType DATA_TYP_PRODUCTION_TESTFLOWSTART
Occurs: Once at the beginning of each test flow
Contains: Test flow name

Member Function Return Value Description

uint64 get_TimeStamp(); Date and time when the test flow starts (in microseconds)
string get_TestFlowName(); Test flow name

[Production Event] End of Test Flow
oneapi::DataType DATA_TYP_PRODUCTION_TESTFLOWEND
Occurs: Once at the ending of each test flow
Contains: Test flow name

Member Function Return Value Description

uint64 get_TimeStamp(); Date and time when the test flow completes (in microseconds)
string get_TestFlowName(); Test flow name

ACS RTDI User Guide
Chapter 2 ACS Nexus
OneAPI C++ SDK

36 v2.3.0, July 2025

[Measured Value] Parametric Test Result
oneapi::DataType DATA_TYP_MEASURED_PARAMETRIC
Occurs: Once per parametric test item during the test of each touchdown
Contains: Results information for all tested sites, and basic information of the test item

Member Function Return Value Description

uint32 get_ResultCount(); Count of result for the test item
uint32 query_HeadSite(uint32 index); Test site number with head information
uint32 query_TestNumber(uint32 index); Test number
string query_TestText(uint32 index); Test description text or label1
float query_LowLimit(uint32 index); Low test limit value
float query_HighLimit(uint32 index); High test limit value
string query_Unit(uint32 index); Test units
string query_TestFlag(uint32 index); Test flags (fail, alarm, etc.)
float query_Result(uint32 index); Test result
string query_TestSuite(uint32 index); Test suite name
string query_MeasurementName(uint32
index);

The unique fully qualified name of measurement

1 In SmarTest 7, the priority is the test comment, followed by "Test suite name: test name." If there is a pin name, it will be "Test suite
name: test name : pin name." In SmarTest 8, it will be always the test descriptor.

[Measured Value] Functional Test Result
oneapi::DataType DATA_TYP_MEASURED_FUNCTIONAL
Occurs: Once per functional test item during the test of each touchdown
Contains: Results information for all tested sites, and basic information of the test item

Member Function Return Value Description

uint32 get_ResultCount(); Count of result for the test item
uint32 query_HeadSite(uint32 index); Test site number with head information
uint32 query_TestNumber(uint32 index); Test number
string query_TestText(uint32 index); Test description text or label
string query_TestFlag(uint32 index); Test flags (fail, alarm, etc.)
uint32 query_CycleCount(uint32 index); Vector cycle count
uint32 query_NumberFail(uint32 index); The number of logic pin names with one or more failures
vector<uint64> query_PinResults(uint64
index);

List of fail Pin index which belong to the given Result
index

string query_PinName(uint64 pinID); Pin name
vector<uint32> query_FailCycles(uint64
pinID);

List of fail cycle numbers which belong to the given Pin

string query_VectNam(uint32 index); Vector module pattern name
string query_TestSuite(uint32 index); Test suite name

ACS RTDI User Guide
Chapter 2 ACS Nexus

OneAPI C++ SDK

v2.3.0, July 2025 37

string query_MeasurementName(uint32
index);

The unique fully qualified name of measurement

[Measured Value] Multiple-Result Parametric Test Record
oneapi::DataType DATA_TYP_MEASURED_MULTI_PARAM
Occurs: Once per multiple-result parametric test item during the test of each touchdown
Contains: Results information for all tested sites, and basic information of the test item

Member Function Return Value Description

uint32 get_ResultCount(); Count of result for the test item
uint32 query_HeadSite(uint32 index); Test site number with head information
uint32 query_TestNumber(uint32 index); Test number
string query_TestText(uint32 index); Test description text or label
float query_LowLimit(uint32 index); Low test limit value
float query_HighLimit(uint32 index); High test limit value
string query_Unit(uint32 index); Test units
string query_TestFlag(uint32 index); Test flags (fail, alarm, etc.)
vector<float> query_Results(uint32 index); List of Test results which belong to the given Result

index
vector<uint64> query_PinResults(uint64
index);

List of Pin index which belong to the given Result index

string query_PinName(uint64 pinID); Pin name
string query_TestSuite(uint32 index); Test suite name
string query_MeasurementName(uint32
index);

The unique fully qualified name of measurement

ACS RTDI User Guide
Chapter 2 ACS Nexus
OneAPI C++ SDK

38 v2.3.0, July 2025

[Notify] Scan Test Result
oneapi::DataType DATA_TYP_MEASURED_SCAN
Occurs: Once per scan test item during the test of each touchdown
Contains: Results information for all tested sites, and basic information of the test item

Member Function Return Value Description

uint32 get_ResultCount(); Count of result for the test item
uint32 query_HeadSite(uint32 index); Test site number with head information
uint32 query_TestNumber(uint32 index); Test number
string query_TestText(uint32 index); Test description text or label
string query_TestFlag(uint32 index); Test flags (fail, alarm, , etc.)
int32 query_TotalCycleCount(uint32 index); Total number of cycles
int32 query_FailCycleCount(uint32 index); Total number of failing cycles
string query_OpSequence(uint32 index); Operating sequence
vector<uint64> query_PatternResults(uint32
index);

List of Pattern index which belong to the given Result

string query_PatternName(uint64
patternID);

Pattern name

vector<uint64> query_PinResults(uint64
index);

List of Pin index which belong to the given Pattern

string query_PinName(uint64 pinID); Pin name
vector<uint32> query_FailCycles(uint64
pinID);

List of fail cycle numbers which belong to the given Pin

string query_TestSuite(uint32 index); Test suite name
string query_MeasurementName(uint32
index);

The unique fully qualified name of measurement

ACS RTDI User Guide
Chapter 2 ACS Nexus

OneAPI C++ SDK

v2.3.0, July 2025 39

[Device Data]
oneapi::DataType DATA_TYP_DEVICE
Occurs: Once for each lot, when all the required data collection is completed
Contains: Device information

Member Function Return Value Description

string get_TestProgramDir(); The absolute path of the folder of the active test program
string get_TestProgramName(); The fully qualified name of the active test program
string get_TestProgramPath(); The absolute path of the active test program file
string get_PinConfig(); The fully qualified name of the active DUT board description

file
string get_ChannelAttribute(); The fully qualified name of the active Channel attributes file
uint32 get_BinInfoCount(); Count of defined soft bin of the active test program
uint32 query_SBinNumber(uint32
index);

The number of the soft bin

string query_SBinName(uint32 index); The description of the soft bin
uint32 query_SBinType(uint32 index); The type of the soft bin
uint32 query_HBinNumber(uint32
index);

The corresponding hard bin number

string query_HBinName(uint32 index); The description of the corresponding hard bin
uint32 query_HBinType(uint32 index); The type of the corresponding hard bin

[Notify] Pin Data
oneapi::DataType DATA_TYP_DEVICE_PIN
Occurs: Once for each lot, when all the required data collection is completed
Contains: Pin information

Member Function Return Value Description

uint32 get_PinInfoCount(); The count of pin information
uint32 query_PinIndex(uint32 index); Pin index
uint32 query_ChannelType(uint32
index);

Channel type

string query_ChannelName(uint32
index);

Channel name

string query_PhysicalName(uint32
index);

Name of physical pin

string query_LogicalName(uint32
index);

Name of logical pin

uint32 query_HeadNumber(uint32
index);

Test head number

uint32 query_SiteNumber(uint32
index);

Test site number

ACS RTDI User Guide
Chapter 2 ACS Nexus
OneAPI C++ SDK

40 v2.3.0, July 2025

[Notify] Pattern Data
oneapi::DataType DATA_TYP_DEVICE_PATTERN
Occurs: Whenever a pattern variable is collected
Contains: Information on a pattern profile for a specific scan test

Member Function Return Value Description

uint32 get_PatternCount(); The count of patterns
string query_OpSequence(uint32
index);

Operating sequence

vector<string>
query_PatternLabels(uint32 index);

List of pattern labels

[User Defined Data]
oneapi::DataType DATA_TYP_USERDEFINED
Occurs: Whenever the user-defined variable is collected
Contains: Variable and its value information

Member Function Return Value Description

map<string,string> get_UserDefined(); Map of user defined data <variable, value>

[Notify] File Transfer
oneapi::DataType DATA_TYP_FILE
Occurs: When each file transfer is completed
Contains: The file name

Member Function Return Value Description

string get_FileName(); The absolute path of the received file

[Notify] Datalog Text
oneapi::DataType DATA_TYP_DATALOGTEXT
Occurs: Whenever a datalog-text variable is collected
Contains: The expression of datalog-text

Member Function Return Value Description

uint64 get_TimeStamp(); Date and time when the test flow completes (in microseconds)
string get_DataLogText(); The expression of datalog text

ACS RTDI User Guide
Chapter 2 ACS Nexus

OneAPI C++ SDK

v2.3.0, July 2025 41

[Notify] Measurement Data
oneapi::DataType DATA_TYP_MEASUREMENT
Occurs: Once a measurement has ended
Contains: The information of measurement

Member Function Return Value Description

string get_MeasurementName(); The unique fully qualified name of the measurement
uint32 get_GroupCount(); Total count of parallel groups
string query_GroupName(uint32 index); The name of the parallel group
int32 query_GroupBypassed(uint32 index); Whether the parallel group was bypassed
vector<uint32> query_GroupSites(uint32
index);

The number of the site(s) where the parallel group was
bypassed

uint32 get_SequenceCount(); Total count of operating sequence
string query_SequenceName(uint32 index); The name of the operating sequence
int32 query_SequenceBypassed(uint32
index);

Whether the operating sequence was bypassed

vector<uint32> query_SequenceSites(uint32
index);

The number of site(s) where the operating sequence was
bypassed

vector<uint32> query_SequenceGroupResults
(uint32 index);

The list of unique "GroupID" for the specific sequence

string query_SequenceGroupName(uint32
groupID);

The name of the parallel group that belongs to the
current sequence

int32 query_SequenceGroupBypassed(uint32
groupID);

Whether the parallel group was bypassed

vector<uint32>
query_SequenceGroupSites(uint32 groupID);

The number of the site(s) where the parallel group was
bypassed

ACS RTDI User Guide
Chapter 2 ACS Nexus
OneAPI C++ SDK

42 v2.3.0, July 2025

 Function Introduction

oneapi::DataType NexusData::getType();

Description Get the type of data currently consumed.

NOTE: This function must be called before all other functions in the consumeData code.

Return One of the following:

• DATA_TYP_PRODUCTION_LOTSTART
• DATA_TYP_PRODUCTION_WAFERSTART
• DATA_TYP_PRODUCTION_TESTSTART
• DATA_TYP_PRODUCTION_TESTEND
• DATA_TYP_PRODUCTION_WAFEREND
• DATA_TYP_PRODUCTION_LOTEND
• DATA_TYP_MEASURED_PARAMETRIC
• DATA_TYP_MEASURED_FUNCTIONAL
• DATA_TYP_MEASURED_MULTI_PARAM
• DATA_TYP_DEVICE
• DATA_TYP_USERDEFINED
• DATA_TYP_FILE
• DATA_TYP_PRODUCTION_TESTFLOWSTART
• DATA_TYP_PRODUCTION_TESTFLOWEND
• DATA_TYP_DATALOGTEXT
• DATA_TYP_IDENTIFICATION
• DATA_TYP_DEVICE_PIN
• DATA_TYP_MEASURED_SCAN
• DATA_TYP_DEVICE_PATTERN

uint64 NexusData::get_TimeStamp();

Description Get the date and time in microseconds. Valid for:

• DATA_TYP_PRODUCTION_LOTSTART
• DATA_TYP_PRODUCTION_LOTEND
• DATA_TYP_PRODUCTION_WAFERSTART
• DATA_TYP_PRODUCTION_WAFEREND
• DATA_TYP_PRODUCTION_TESTSTART
• DATA_TYP_PRODUCTION_TESTEND
• DATA_TYP_PRODUCTION_TESTFLOWSTART
• DATA_TYP_PRODUCTION_TESTFLOWEND

Return If by one of the above events, returns a valid value. For example, if event is
DATA_TYP_PRODUCTION_LOTSTART, then the value represents the timestamp of Lot_Start.

Otherwise, returns 0.

ACS RTDI User Guide
Chapter 2 ACS Nexus

OneAPI C++ SDK

v2.3.0, July 2025 43

string NexusData::get_TestProgramDir();

Description Get the absolute path of the folder of the active test program.

Valid always, refreshed by DATA_TYP_DEVICE.

Return Valid value.

string NexusData::get_TestProgramName()

Description Get the fully qualified name of the active test program.

Valid always, refreshed by DATA_TYP_DEVICE.

Return Valid value.

string NexusData::get_TestProgramPath();

Description Get the absolute path of the active test program file.

Valid always, refreshed by DATA_TYP_DEVICE.

Return Valid value.

string NexusData::get_PinConfig();

Description Get the fully qualified name of the active DUT board description file.

Valid always, refreshed by DATA_TYP_DEVICE.

Return Valid value.

string NexusData::get_ChannelAttribute();

Description Get the fully qualified name of the active Channel attributes file.

Valid always, refreshed by DATA_TYP_DEVICE.

Return Valid value.

ACS RTDI User Guide
Chapter 2 ACS Nexus
OneAPI C++ SDK

44 v2.3.0, July 2025

uint32 NexusData::get_BinInfoCount();

Description Get the count of defined soft bin of the active test program.

Valid always, refreshed by DATA_TYP_DEVICE.

Return Valid value.

uint32 NexusData::query_SBinNumber(uint32 index);

Description Query the number of the soft bin.

Valid always, refreshed by DATA_TYP_DEVICE.

Parameter Input:

Index number

Return Returns a valid value if valid input index.

Returns 65535 if input index is out of bounds.

string NexusData::query_SBinName(uint32 index);

Description Query the description of the soft bin.

Valid always, refreshed by DATA_TYP_DEVICE.

Parameter Input:

Index number

Return Returns a valid value if valid input index.

Returns "" (empty string) if input index is out of bounds.

uint32 NexusData::query_SBinType(uint32 index);

Description Query the type of soft bin.

Valid always, refreshed by DATA_TYP_DEVICE.

Parameter Input:

Index number

Return If valid input index, returns:

0 – PASS
1 – FAIL
2 – UNKONWN

If input index is out of bounds, returns 2.

ACS RTDI User Guide
Chapter 2 ACS Nexus

OneAPI C++ SDK

v2.3.0, July 2025 45

uint32 NexusData::query_HBinNumber(uint32 index);

Description Query the number of hard bins.

Valid always, refreshed by DATA_TYP_DEVICE.

Parameter Input:

Index number

Return Returns a valid value if valid input index.

Returns 65535 if input index is out of bounds.

string NexusData::query_HBinName(uint32 index);

Description Query the description of the hard bin.

Valid always, refreshed by DATA_TYP_DEVICE.

Parameter Input:

Index number

Return Returns a valid value if valid input index.

Returns "" (empty string) if input index is out of bounds.

uint32 NexusData::query_HBinType(uint32 index);

Description Query the type of hard bin.

Valid always, refreshed by DATA_TYP_DEVICE.

Parameter Input:

Index number

Return If valid input index, returns:

0 – PASS
1 – FAIL
2 – UNKONWN

If input index is out of bounds, returns 2.

uint32 NexusData::get_PatternCount();

Description Get the count of patterns.

Valid always, refreshed by DATA_TP_DEVICE_PATTERN.

Return Returns valid value in all cases.

ACS RTDI User Guide
Chapter 2 ACS Nexus
OneAPI C++ SDK

46 v2.3.0, July 2025

uint32 NexusData::query_OpSequence(uint32 index);

Description Query the operating sequence.

Valid always, refreshed by

• DATA_TYP_DEVICE_PATTERN
• DATA_TYP_MEASURED_

Parameter Input:

Index number

Return Returns a valid value if valid input index.

Returns "" (empty string) if input index is out of bounds.

vector<string> NexusData::query_PatternLables(uint32 index);

Description Query the list of pattern labels.

Valid for DATA_TYP_DEVICE_PATTERN.

Return Returns a valid value if valid input index.

Returns no element if input index is out of bounds.

map<string,string> NexusData::get_UserDefined();

Description Get the user defined key and value pairs.

Valid for DATA_TYP_USERDEFINED.

Return Returns valid value if by above event, otherwise returns map with no elements.

string NexusData::get_FileName();

Description Get the absolute path of the received file. The file is in the 'home' folder of the current user.

Valid always, refreshed by DATA_TYP_FILE.

Return Returns valid value if by above event, otherwise returns "" (empty string).

ACS RTDI User Guide
Chapter 2 ACS Nexus

OneAPI C++ SDK

v2.3.0, July 2025 47

int32 NexusData::get_Timezone();

Description Get the time zone where ACS Nexus is running (value in integer).

Refreshed by DATA_TYP_PRODUCTION_LOTSTART.

Return Returns a valid value in the case of:
• Production Events
• Measured Value Events

Returns 0 in the case of:
• Device Data
• User Defined Data
• File Transfer

uint64 NexusData::get_SetupTime();

Description Get the date and time (in microseconds) when the test program was started.

Refreshed by DATA_TYP_PRODUCTION_LOTSTART.

Return Returns a valid value in the case of:
• Production Events
• Measured Value Events

Returns 0 in the case of:
• Device Data
• User Defined Data
• File Transfer

uint32 NexusData::get_StationNumber();

Description Get the tester station number (value in integer).

Refreshed by DATA_TYP_PRODUCTION_LOTSTART.

Return Returns a valid value in the case of:
• Production Events
• Measured Value Events

Returns 0 in the case of:
• Device Data
• User Defined Data
• File Transfer

ACS RTDI User Guide
Chapter 2 ACS Nexus
OneAPI C++ SDK

48 v2.3.0, July 2025

string NexusData::get_ModeCode();

Description Get the test mode code.

Refreshed by DATA_TYP_PRODUCTION_LOTSTART.

Return Returns a valid value in the case of:
• Production Events
• Measured Value Events

Returns "" (empty string) in the case of:
• Device Data
• User Defined Data
• File Transfer

string NexusData::get_RetestCode();

Description Get the lot retest code.

Refreshed by DATA_TYP_PRODUCTION_LOTSTART.

Return Returns a valid value in the case of:
• Production Events
• Measured Value Events

Returns "" (empty string) in the case of:
• Device Data
• User Defined Data
• File Transfer

string NexusData::get_ProtectionCode();

Description Get the data protection code.

Refreshed by DATA_TYP_PRODUCTION_LOTSTART.

Return Returns a valid value in the case of:
• Production Events
• Measured Value Events

Returns "" (empty string) in the case of:
• Device Data
• User Defined Data
• File Transfer

ACS RTDI User Guide
Chapter 2 ACS Nexus

OneAPI C++ SDK

v2.3.0, July 2025 49

uint32 NexusData::get_BurnTimeMinutes();

Description Get the burn-in time (in minutes).

Refreshed by DATA_TYP_PRODUCTION_LOTSTART.

Return Returns a valid value in the case of:
• Production Events
• Measured Value Events

Returns 0 in the case of:
• Device Data
• User Defined Data
• File Transfer

string NexusData::get_CommandCode();

Description Get the command mode code of the tester.

Refreshed by DATA_TYP_PRODUCTION_LOTSTART.

Return Returns a valid value in the case of:
• Production Events
• Measured Value Events

Returns " (empty string) in the case of:
• Device Data
• User Defined Data
• File Transfer

string NexusData::get_LotId();

Description Get the lot ID.

Refreshed by DATA_TYP_PRODUCTION_LOTSTART.

Return Returns a valid value in the case of:
• Production Events
• Measured Value Events

Returns "" (empty string) in the case of:
• Device Data
• User Defined Data
• File Transfer

ACS RTDI User Guide
Chapter 2 ACS Nexus
OneAPI C++ SDK

50 v2.3.0, July 2025

string NexusData::get_PartType();

Description Get the part type or product ID.

Refreshed by DATA_TYP_PRODUCTION_LOTSTART.

Return Returns a valid value in the case of:
• Production Events
• Measured Value Events

Returns "" (empty string) in the case of:
• Device Data
• User Defined Data
• File Transfer

string NexusData::get_NodeName();

Description Get the hostname of the tester system controller.

Refreshed by DATA_TYP_PRODUCTION_LOTSTART.

Return Returns a valid value in the case of:
• Production Events
• Measured Value Events

Returns "" (empty string) in the case of:
• Device Data
• User Defined Data
• File Transfer

string NexusData::get_TesterType();

Description Get the tester type.

Refreshed by DATA_TYP_PRODUCTION_LOTSTART.

Return Returns a valid value in the case of:
• Production Events
• Measured Value Events

Returns "" (empty string) in the case of:
• Device Data
• User Defined Data
• File Transfer

ACS RTDI User Guide
Chapter 2 ACS Nexus

OneAPI C++ SDK

v2.3.0, July 2025 51

string NexusData::get_JobName();

Description Get the test program name.

Refreshed by DATA_TYP_PRODUCTION_LOTSTART.

Return Returns a valid value in the case of:
• Production Events
• Measured Value Events

Returns "" (empty string) in the case of:
• Device Data
• User Defined Data
• File Transfer

string NexusData::get_JobRevision();

Description Get the test program revision number.

Refreshed by DATA_TYP_PRODUCTION_LOTSTART.

Return Returns a valid value in the case of:
• Production Events
• Measured Value Events

Returns "" (empty string) in the case of:
• Device Data
• User Defined Data
• File Transfer

string NexusData::get_SublotId();

Description Get the sublot ID.

Refreshed by DATA_TYP_PRODUCTION_LOTSTART.

Return Returns a valid value in the case of:
• Production Events
• Measured Value Events

Returns "" (empty string) in the case of:
• Device Data
• User Defined Data
• File Transfer

ACS RTDI User Guide
Chapter 2 ACS Nexus
OneAPI C++ SDK

52 v2.3.0, July 2025

string NexusData::get_OperatorName();

Description Get the operator name or ID at setup time.

Refreshed by DATA_TYP_PRODUCTION_LOTSTART.

Return Returns a valid value in the case of:
• Production Events
• Measured Value Events

Returns "" (empty string) in the case of:
• Device Data
• User Defined Data
• File Transfer

string NexusData::get_TesterosType();

Description Get the software type.

Refreshed by DATA_TYP_PRODUCTION_LOTSTART.

Return Returns a valid value in the case of:
• Production Events
• Measured Value Events

Returns "" (empty string) in the case of:
• Device Data
• User Defined Data
• File Transfer

string NexusData::get_TesterosVersion();

Description Get the tester software version number.

Refreshed by DATA_TYP_PRODUCTION_LOTSTART.

Return Returns a valid value in the case of:
• Production Events
• Measured Value Events

Returns "" (empty string) in the case of:
• Device Data
• User Defined Data
• File Transfer

ACS RTDI User Guide
Chapter 2 ACS Nexus

OneAPI C++ SDK

v2.3.0, July 2025 53

string NexusData::get_TestType();

Description Get the type of lot.

Refreshed by DATA_TYP_PRODUCTION_LOTSTART.

Return Returns a valid value (PACKAGE_TEST or WAFER_TEST) in the case of:
• Production Events
• Measured Value Events

Returns "" (empty string) in the case of:
• Device Data
• User Defined Data
• File Transfer

string NexusData::get_TestStepCode();

Description Get the test phase or step code.

Refreshed by DATA_TYP_PRODUCTION_LOTSTART.

Return Returns a valid value in the case of:
• Production Events
• Measured Value Events

Returns "" (empty string) in the case of:
• Device Data
• User Defined Data
• File Transfer

string NexusData::get_TestTemperature();

Description Get the test temperature.

Refreshed by DATA_TYP_PRODUCTION_LOTSTART.

Return Returns a valid value in the case of:
• Production Events
• Measured Value Events

Returns "" (empty string) in the case of:
• Device Data
• User Defined Data
• File Transfer

ACS RTDI User Guide
Chapter 2 ACS Nexus
OneAPI C++ SDK

54 v2.3.0, July 2025

string NexusData::get_UserText();

Description Get the user defined text.

Refreshed by DATA_TYP_PRODUCTION_LOTSTART.

Return Returns a valid value in the case of:
• Production Events
• Measured Value Events

Returns "" (empty string) in the case of:
• Device Data
• User Defined Data
• File Transfer

string NexusData::get_AuxiliaryFile();

Description Get the name of the auxiliary data file.

Refreshed by DATA_TYP_PRODUCTION_LOTSTART.

Return Returns a valid value in the case of:
• Production Events
• Measured Value Events

Returns "" (empty string) in the case of:
• Device Data
• User Defined Data
• File Transfer

string NexusData::get_PackageType();

Description Get the package type.

Refreshed by DATA_TYP_PRODUCTION_LOTSTART.

Return Returns a valid value in the case of:
• Production Events
• Measured Value Events

Returns "" (empty string) in the case of:
• Device Data
• User Defined Data
• File Transfer

ACS RTDI User Guide
Chapter 2 ACS Nexus

OneAPI C++ SDK

v2.3.0, July 2025 55

string NexusData::get_FamilyId();

Description Get the product family ID.

Refreshed by DATA_TYP_PRODUCTION_LOTSTART.

Return Returns a valid value in the case of:
• Production Events
• Measured Value Events

Returns "" (empty string) in the case of:
• Device Data
• User Defined Data
• File Transfer

string NexusData::get_DateCode();

Description Get the date code.

Refreshed by DATA_TYP_PRODUCTION_LOTSTART.

Return Returns a valid value in the case of:
• Production Events
• Measured Value Events

Returns "" (empty string) in the case of:
• Device Data
• User Defined Data
• File Transfer

string NexusData::get_FacilityId();

Description Get the test facility ID.

Refreshed by DATA_TYP_PRODUCTION_LOTSTART.

Return Returns a valid value in the case of:
• Production Events
• Measured Value Events

Returns "" (empty string) in the case of:
• Device Data
• User Defined Data
• File Transfer

ACS RTDI User Guide
Chapter 2 ACS Nexus
OneAPI C++ SDK

56 v2.3.0, July 2025

string NexusData::get_FloorId();

Description Get the test floor ID.

Refreshed by DATA_TYP_PRODUCTION_LOTSTART.

Return Returns a valid value in the case of:
• Production Events
• Measured Value Events

Returns "" (empty string) in the case of:
• Device Data
• User Defined Data
• File Transfer

string NexusData::get_ProcessId();

Description Get the fabrication process ID.

Refreshed by DATA_TYP_PRODUCTION_LOTSTART.

Return Returns a valid value in the case of:
• Production Events
• Measured Value Events

Returns "" (empty string) in the case of:
• Device Data
• User Defined Data
• File Transfer

string NexusData::get_OperationFreq();

Description Get the operation frequency or step.

Refreshed by DATA_TYP_PRODUCTION_LOTSTART.

Return Returns a valid value in the case of:
• Production Events
• Measured Value Events

Returns "" (empty string) in the case of:
• Device Data
• User Defined Data
• File Transfer

ACS RTDI User Guide
Chapter 2 ACS Nexus

OneAPI C++ SDK

v2.3.0, July 2025 57

string NexusData::get_SpecName();

Description Get the test specification name.

Refreshed by DATA_TYP_PRODUCTION_LOTSTART.

Return Returns a valid value in the case of:
• Production Events
• Measured Value Events

Returns "" (empty string) in the case of:
• Device Data
• User Defined Data
• File Transfer

string NexusData::get_SpecVersion();

Description Get the specification version number.

Refreshed by DATA_TYP_PRODUCTION_LOTSTART.

Return Returns a valid value in the case of:
• Production Events
• Measured Value Events

Returns "" (empty string) in the case of:
• Device Data
• User Defined Data
• File Transfer

string NexusData::get_FlowId();

Description Get the test flow ID.

Refreshed by DATA_TYP_PRODUCTION_LOTSTART.

Return Returns a valid value in the case of:
• Production Events
• Measured Value Events

Returns "" (empty string) in the case of:
• Device Data
• User Defined Data
• File Transfer

ACS RTDI User Guide
Chapter 2 ACS Nexus
OneAPI C++ SDK

58 v2.3.0, July 2025

string NexusData::get_SetupId();

Description Get the test setup ID.

Refreshed by DATA_TYP_PRODUCTION_LOTSTART.

Return Returns a valid value in the case of:
• Production Events
• Measured Value Events

Returns "" (empty string) in the case of:
• Device Data
• User Defined Data
• File Transfer

string NexusData::get_DesignRevision();

Description Get the device design revision.

Refreshed by DATA_TYP_PRODUCTION_LOTSTART.

Return Returns a valid value in the case of:
• Production Events
• Measured Value Events

Returns "" (empty string) in the case of:
• Device Data
• User Defined Data
• File Transfer

string NexusData::get_EngineeringLotId();

Description Get the engineering lot ID.

Refreshed by DATA_TYP_PRODUCTION_LOTSTART.

Return Returns a valid value in the case of:
• Production Events
• Measured Value Events

Returns "" (empty string) in the case of:
• Device Data
• User Defined Data
• File Transfer

ACS RTDI User Guide
Chapter 2 ACS Nexus

OneAPI C++ SDK

v2.3.0, July 2025 59

string NexusData::get_RomCode();

Description Get the ROM code ID.

Refreshed by DATA_TYP_PRODUCTION_LOTSTART.

Return Returns a valid value in the case of:
• Production Events
• Measured Value Events

Returns "" (empty string) in the case of:
• Device Data
• User Defined Data
• File Transfer

string NexusData::get_SerialNumber();

Description Get the tester serial number.

Refreshed by DATA_TYP_PRODUCTION_LOTSTART.

Return Returns a valid value in the case of:
• Production Events
• Measured Value Events

Returns "" (empty string) in the case of:
• Device Data
• User Defined Data
• File Transfer

string NexusData::get_SupervisorName();

Description Get the supervisor name or ID.

Refreshed by DATA_TYP_PRODUCTION_LOTSTART.

Return Returns a valid value in the case of:
• Production Events
• Measured Value Events

Returns "" (empty string) in the case of:
• Device Data
• User Defined Data
• File Transfer

ACS RTDI User Guide
Chapter 2 ACS Nexus
OneAPI C++ SDK

60 v2.3.0, July 2025

uint32 NexusData::get_HeadNumber();

Description Get the test head number.

Valid by:

• DATA_TYP_PRODUCTION_LOTSTART
• DATA_TYP_PRODUCTION_WAFERSTART
• DATA_TYP_PRODUCTION_WAFEREND

Return In the case of Lot Start, returned value represents the test head number of the lot.

In the case of Wafer Start or Wafer End, returned value represents test head number of the wafer.

Otherwise, returns 0.

uint32 NexusData::get_SiteGroupNumber();

Description Get the site group number.

Valid by:

• DATA_TYP_PRODUCTION_LOTSTART
• DATA_TYP_PRODUCTION_WAFERSTART
• DATA_TYP_PRODUCTION_WAFEREND

Return In the case of Lot Start, returned value represents the site group number of the lot.

In the case of Wafer Start or Wafer End, returned value represents site group number of the
wafer.

Otherwise, returns 0.

uint32 NexusData::get_SiteCount();

Description Get the number of active sites described in this record.

Refreshed by DATA_TYP_PRODUCTION_LOTSTART.

Return Returns a valid value in the case of:
• Production Events
• Measured Value Events

Returns 0 in the case of:
• Device Data
• User Defined Data
• File Transfer

ACS RTDI User Guide
Chapter 2 ACS Nexus

OneAPI C++ SDK

v2.3.0, July 2025 61

vector<uint32> NexusData::get_TotalHeadSiteList();

Description Get all test site numbers.

Refreshed by DATA_TYP_PRODUCTION_LOTSTART.

Return Returns a valid value in the case of:
• Production Events
• Measured Value Events

Returns no element in the case of:
• Device Data
• User Defined Data
• File Transfer

string NexusData::get_ProberHandlerType();

Description Get handler or prober type.

Refreshed by DATA_TYP_PRODUCTION_LOTSTART.

Return Returns a valid value in the case of:
• Production Events
• Measured Value Events

Returns "" (empty string) in the case of:
• Device Data
• User Defined Data
• File Transfer

string NexusData::get_ProberHandlerId();

Description Get the handler or prober ID.

Refreshed by DATA_TYP_PRODUCTION_LOTSTART.

Return Returns a valid value in the case of:
• Production Events
• Measured Value Events

Returns "" (empty string) in the case of:
• Device Data
• User Defined Data
• File Transfer

ACS RTDI User Guide
Chapter 2 ACS Nexus
OneAPI C++ SDK

62 v2.3.0, July 2025

string NexusData::get_ProbecardType();

Description Get the probe card type.

Refreshed by DATA_TYP_PRODUCTION_LOTSTART.

Return Returns a valid value in the case of:
• Production Events
• Measured Value Events

Returns "" (empty string) in the case of:
• Device Data
• User Defined Data
• File Transfer

string NexusData::get_ProbecardId();

Description Get the probe card ID.

Refreshed by DATA_TYP_PRODUCTION_LOTSTART.

Return Returns a valid value in the case of:
• Production Events
• Measured Value Events

Returns "" (empty string) in the case of:
• Device Data
• User Defined Data
• File Transfer

string NexusData::get_LoadboardType();

Description Get the DUT board type.

Refreshed by DATA_TYP_PRODUCTION_LOTSTART.

Return Returns a valid value in the case of:
• Production Events
• Measured Value Events

Returns "" (empty string) in the case of:
• Device Data
• User Defined Data
• File Transfer

ACS RTDI User Guide
Chapter 2 ACS Nexus

OneAPI C++ SDK

v2.3.0, July 2025 63

string NexusData::get_LoadboardId();

Description Get the DUT board ID.

Refreshed by DATA_TYP_PRODUCTION_LOTSTART.

Return Returns a valid value in the case of:
• Production Events
• Measured Value Events

Returns "" (empty string) in the case of:
• Device Data
• User Defined Data
• File Transfer

string NexusData::get_DibType();

Description Get the DIB board type.

Refreshed by DATA_TYP_PRODUCTION_LOTSTART.

Return Returns a valid value in the case of:
• Production Events
• Measured Value Events

Returns "" (empty string) in the case of:
• Device Data
• User Defined Data
• File Transfer

string NexusData::get_DibId();

Description Get the DIB board ID.

Refreshed by DATA_TYP_PRODUCTION_LOTSTART.

Return Returns a valid value in the case of:
• Production Events
• Measured Value Events

Returns "" (empty string) in the case of:
• Device Data
• User Defined Data
• File Transfer

ACS RTDI User Guide
Chapter 2 ACS Nexus
OneAPI C++ SDK

64 v2.3.0, July 2025

string NexusData::get_CableType();

Description Get the interface cable type.

Refreshed by DATA_TYP_PRODUCTION_LOTSTART.

Return Returns a valid value in the case of:
• Production Events
• Measured Value Events

Returns "" (empty string) in the case of:
• Device Data
• User Defined Data
• File Transfer

string NexusData::get_CableId();

Description Get the interface cable ID.

Refreshed by DATA_TYP_PRODUCTION_LOTSTART.

Return Returns a valid value in the case of:
• Production Events
• Measured Value Events

Returns "" (empty string) in the case of:
• Device Data
• User Defined Data
• File Transfer

string NexusData::get_ContactorType();

Description Get the hander contactor type.

Refreshed by DATA_TYP_PRODUCTION_LOTSTART.

Return Returns a valid value in the case of:
• Production Events
• Measured Value Events

Returns "" (empty string) in the case of:
• Device Data
• User Defined Data
• File Transfer

ACS RTDI User Guide
Chapter 2 ACS Nexus

OneAPI C++ SDK

v2.3.0, July 2025 65

string NexusData::get_ContactorId();

Description Get the hander contactor ID.

Refreshed by DATA_TYP_PRODUCTION_LOTSTART.

Return Returns a valid value in the case of:
• Production Events
• Measured Value Events

Returns "" (empty string) in the case of:
• Device Data
• User Defined Data
• File Transfer

string NexusData::get_LaserType();

Description Get the laser type.

Refreshed by DATA_TYP_PRODUCTION_LOTSTART.

Return Returns a valid value in the case of:
• Production Events
• Measured Value Events

Returns "" (empty string) in the case of:
• Device Data
• User Defined Data
• File Transfer

string NexusData::get_LaserId();

Description Get the laser ID.

Refreshed by DATA_TYP_PRODUCTION_LOTSTART.

Return Returns a valid value in the case of:
• Production Events
• Measured Value Events

Returns "" (empty string) in the case of:
• Device Data
• User Defined Data
• File Transfer

ACS RTDI User Guide
Chapter 2 ACS Nexus
OneAPI C++ SDK

66 v2.3.0, July 2025

string NexusData::get_ExtraEquipType();

Description Get extra equipment type.

Refreshed by DATA_TYP_PRODUCTION_LOTSTART.

Return Returns a valid value in the case of:
• Production Events
• Measured Value Events

Returns "" (empty string) in the case of:
• Device Data
• User Defined Data
• File Transfer

string NexusData::get_ExtraEquipId();

Description Get extra equipment ID.

Refreshed by DATA_TYP_PRODUCTION_LOTSTART.

Return Returns a valid value in the case of:
• Production Events
• Measured Value Events

Returns "" (empty string) in the case of:
• Device Data
• User Defined Data
• File Transfer

string NexusData::get_DisPositionCode();

Description Get lot disposition code.

Refreshed by DATA_TYP_PRODUCTION_LOTSTART.

Return Returns a valid value in the case of the above event.

Otherwise, returns "" (empty string)

ACS RTDI User Guide
Chapter 2 ACS Nexus

OneAPI C++ SDK

v2.3.0, July 2025 67

string NexusData::get_UserDescription();

Description Get the description supplied by the user.

Valid by:

• DATA_TYP_PRODUCTION_LOTEND
• DATA_TYP_PRODUCTION_WAFEREND

Return In the case of Lot End, value represents the lot description supplied by the user.

In the case of Wafer End, value represents the wafer description supplied by the user.

Otherwise, returns "" (empty string).

string NexusData::get_ExecDescription();

Description Get the description supplied by the executive.

Valid by:

• DATA_TYP_PRODUCTION_LOTEND
• DATA_TYP_PRODUCTION_WAFEREND

Return In the case of Lot End, value represents the lot description supplied by the user.

In the case of Wafer End, value represents the wafer description supplied by the user.

Otherwise, returns "" (empty string).

float NexusData::get_WaferSize();

Description Get the diameter of the wafer in WF_UNITS.

Refreshed by:

• DATA_TYP_PRODUCTION_WAFERSTART

Return Returns a valid value in the case of:
• Production Events (except for Lot Start)
• Measured Value Events

Returns 0.0 in the case of:
• Lot Start
• Device Data
• User Defined Data
• File Transfer

ACS RTDI User Guide
Chapter 2 ACS Nexus
OneAPI C++ SDK

68 v2.3.0, July 2025

float NexusData::get_DieHeight();

Description Get the height of the die in WF_UNITS.

Refreshed by:

• DATA_TYP_PRODUCTION_WAFERSTART

Return Returns a valid value in the case of:
• Production Events (except for Lot Start)
• Measured Value Events

Returns 0.0 in the case of:
• Lot Start
• Device Data
• User Defined Data
• File Transfer

float NexusData::get_DieWidth();

Description Get the width of the die in WF_UNITS.

Refreshed by:

• DATA_TYP_PRODUCTION_WAFERSTART

Return Returns a valid value in the case of:
• Production Events (except for Lot Start)
• Measured Value Events

Returns 0.0 in the case of:
• Lot Start
• Device Data
• User Defined Data
• File Transfer

uint32 NexusData::get_WaferUnits();

Description Get the unit for wafer and die dimensions.

Refreshed by:

• DATA_TYP_PRODUCTION_WAFERSTART

Return Returns a valid value in the case of:
• Production Events (except for Lot Start)
• Measured Value Events

Returns 0 in the case of:
• Lot Start
• Device Data
• User Defined Data
• File Transfer

ACS RTDI User Guide
Chapter 2 ACS Nexus

OneAPI C++ SDK

v2.3.0, July 2025 69

string NexusData::get_WaferFlat();

Description Get the orientation of the wafer flat.

Refreshed by:

• DATA_TYP_PRODUCTION_WAFERSTART

Return Returns a valid value in the case of:
• Production Events (except for Lot Start)
• Measured Value Events

Returns "" (empty string) in the case of:
• Lot Start
• Device Data
• User Defined Data
• File Transfer

int32 NexusData::get_CenterY();

Description Get the Y-coordinate of the center die on the wafer.

Refreshed by:

• DATA_TYP_PRODUCTION_WAFERSTART

Return Returns a valid value in the case of:
• Production Events (except for Lot Start)
• Measured Value Events

Returns -32787 in the case of:
• Lot Start
• Device Data
• User Defined Data
• File Transfer

int32 NexusData::get_CenterX();

Description Get the X-coordinate of the center die on the wafer.

Refreshed by:

• DATA_TYP_PRODUCTION_WAFERSTART

Return Returns a valid value in the case of:
• Production Events (except for Lot Start)
• Measured Value Events

Returns -32787 in the case of:
• Lot Start
• Device Data
• User Defined Data
• File Transfer

ACS RTDI User Guide
Chapter 2 ACS Nexus
OneAPI C++ SDK

70 v2.3.0, July 2025

string NexusData::get_PositiveX();

Description Get the positive X-direction of the wafer.

Refreshed by:

• DATA_TYP_PRODUCTION_WAFERSTART

Return Returns a valid value in the case of:
• Production Events (except for Lot Start)
• Measured Value Events

Returns "" (empty string) in the case of:
• Lot Start
• Device Data
• User Defined Data
• File Transfer

string NexusData::get_PositiveY();

Description Get the positive Y-direction of the wafer.

Refreshed by:

• DATA_TYP_PRODUCTION_WAFERSTART

Return Returns a valid value in the case of:
• Production Events (except for Lot Start)
• Measured Value Events

Returns "" (empty string) in the case of:
• Lot Start
• Device Data
• User Defined Data
• File Transfer

string NexusData::get_WaferId();

Description Get the wafer ID.

Refreshed by:

• DATA_TYP_PRODUCTION_WAFERSTART

Return Returns a valid value in the case of:
• Production Events (except for Lot Start)
• Measured Value Events

Returns "" (empty string) in the case of:
• Lot Start
• Device Data
• User Defined Data
• File Transfer

ACS RTDI User Guide
Chapter 2 ACS Nexus

OneAPI C++ SDK

v2.3.0, July 2025 71

uint32 NexusData::get_TestedCount();

Description Get the number of the tested parts.

Refreshed by:

• DATA_TYP_PRODUCTION_WAFEREND

Return Returns a valid value in the case above, otherwise returns 0.

uint32 NexusData::get_RetestedCount();

Description Get the number of the retested parts.

Refreshed by:

• DATA_TYP_PRODUCTION_WAFEREND

Return Returns a valid value in the case above, otherwise returns 0.

uint32 NexusData::get_GoodCount();

Description Get the number of the tested parts that have passed.

Refreshed by:

• DATA_TYP_PRODUCTION_WAFEREND

Return Returns a valid value in the case above, otherwise returns 0.

vector<uint32> NexusData::get_HeadSiteList();

Description Get array of test site number with head information.

Valid for DATA_TYP_PRODUCTION_TESTSTART

NOTE:
"headsite" is a new concept proposed by OneAPI. It integrates head and site information into an
integer. The following methods can convert headsite to head or site:

• uint32 toHead(uint32 index);
• uint32 toSite(uint32 index);

Return Returns a valid value in the case above, otherwise returns no element.

ACS RTDI User Guide
Chapter 2 ACS Nexus
OneAPI C++ SDK

72 v2.3.0, July 2025

uint32 NexusData::get_ResultCount();

Description Get the count of the test result.

Valid for:

• DATA_TYP_PRODUCTION_TESTEND
• DATA_TYP_MEASURED_PARAMETRIC
• DATA_TYP_MEASURED_FUNCTIONAL
• DATA_TYP_MEASURED_MULTI_PARAM

Return In the case of the above events, returns a valid value.
For example, if event is DATA_TYP_PRODUCTION_TESTEND, then the value represents the
count of DUTs of the current touchdown. If event is
DATA_TYP_MEASURED_FUNCTIONAL, then the value represents the count of functional
test result for the current test item.

Otherwise, returns 0

uint32 NexusData::query_HeadSite(uint32 index);

Description Query the test site number with head information.

Valid by:

• DATA_TYP_PRODUCTION_TESTEND
• DATA_TYP_MEASURED_PARAMETRIC
• DATA_TYP_MEASURED_FUNCTIONAL
• DATA_TYP_MEASURED_MULTI_PARAM
• DATA_TYP_MEASURED_SCAN
• DATA_TYP_PRODUCTION_TESTSTART

Return Returns a valid value if valid input index.

Returns 0 if input index is out of bounds.

string NexusData::query_PartFlag(uint32 index);

Description Query the part information flags.

Valid by:

• DATA_TYP_PRODUCTION_TESTEND

Return Returns a valid value if valid input index.

Returns "" (empty string) if input index is out of bounds.

ACS RTDI User Guide
Chapter 2 ACS Nexus

OneAPI C++ SDK

v2.3.0, July 2025 73

uint32 NexusData::query_SBinResult(uint32 index);

Description Query the soft bin number.

Valid by:

• DATA_TYP_PRODUCTION_TESTEND

Return Returns a valid value if valid input index.

Returns 0 if input index is out of bounds.

uint32 NexusData::query_HBinResult(uint32 index);

Description Query the hard bin number.

Valid by:

• DATA_TYP_PRODUCTION_TESTEND

Return Returns a valid value if valid input index.

Returns 0 if input index is out of bounds.

int32 NexusData::query_XCoord(uint32 index);

Description Query the X-coordinate.

Valid by:

• DATA_TYP_PRODUCTION_TESTEND
• DATA_TYP_PRODUCTION_TESTSTART

Return Returns a valid value if valid input index.

Returns 65535 if input index is out of bounds.

int32 NexusData::query_YCoord(uint32 index);

Description Query the Y-coordinate.

Valid by:

• DATA_TYP_PRODUCTION_TESTEND
• DATA_TYP_PRODUCTION_TESTSTART

Return Returns a valid value if valid input index.

Returns 65535 if input index is out of bounds.

ACS RTDI User Guide
Chapter 2 ACS Nexus
OneAPI C++ SDK

74 v2.3.0, July 2025

uint32 NexusData::query_TestTime(uint32 index);

Description Query the elapsed test time in microseconds.

Valid by:

• DATA_TYP_PRODUCTION_TESTEND

Return Returns a valid value if valid input index.

Returns 0 if input index is out of bounds.

string NexusData::query_PartId(uint32 index)

Description Query the part identification.

Valid by:

• DATA_TYP_PRODUCTION_TESTEND

Return Returns a valid value if valid input index.

Returns "" (empty string) if input index is out of bounds.

string NexusData::query_PartText (uint32 index);

Description Query the part description text.

Valid by:

• DATA_TYP_PRODUCTION_TESTEND

Return Returns a valid value if valid input index.

Returns "" (empty string) if input index is out of bounds.

uint32 NexusData::query_TestNumber(uint32 index)

Description Get the number of current test item.

Valid by:

• DATA_TYP_MEASURED_PARAMETRIC
• DATA_TYP_MEASURED_FUNCTIONAL
• DATA_TYP_MEASURED_MULTI_PARAM

Return Returns a valid value if valid input index.
For example, if event is DATA_TYP_MEASURED_PARAMETRIC, then the value represents
the number of the current parametric test.

Returns "" (empty string) if input index is out of bounds.

ACS RTDI User Guide
Chapter 2 ACS Nexus

OneAPI C++ SDK

v2.3.0, July 2025 75

string NexusData::query_TestText(uint32 index);

Description Query test description text or label.

Valid by:

• DATA_TYP_MEASURED_PARAMETRIC
• DATA_TYP_MEASURED_FUNCTIONAL
• DATA_TYP_MEASURED_MULTI_PARAM

Return Returns a valid value if valid input index.
For example, if event is DATA_TYP_MEASURED_PARAMETRIC, then the value represents
the test text of the current parametric test.

Returns "" (empty string) if input index is out of bounds.

float NexusData::query_LowLimit(uint32 index);

Description Query the low test limit value.

Valid by:

• DATA_TYP_MEASURED_PARAMETRIC
• DATA_TYP_MEASURED_MULTI_PARAM

Return Returns a valid value if valid input index.
For example, if event is DATA_TYP_MEASURED_PARAMETRIC, then the value represents
the low limit of the current parametric test.

Returns 0.0 if input index is out of bounds.

float NexusData::query_HighLimit(uint32 index);

Description Query the high test limit value.

Valid by:

• DATA_TYP_MEASURED_PARAMETRIC
• DATA_TYP_MEASURED_MULTI_PARAM

Return Returns a valid value if valid input index.
For example, if event is DATA_TYP_MEASURED_PARAMETRIC, then the value represents
the high limit of the current parametric test.

Returns 0.0 if input index is out of bounds.

ACS RTDI User Guide
Chapter 2 ACS Nexus
OneAPI C++ SDK

76 v2.3.0, July 2025

string NexusData::query_Unit(uint32 index);

Description Query the test units.

Valid by:

• DATA_TYP_MEASURED_PARAMETRIC
• DATA_TYP_MEASURED_MULTI_PARAM

Return Returns a valid value if valid input index.
For example, if event is DATA_TYP_MEASURED_PARAMETRIC, then the value represents
the test unit of the current parametric test.

Returns "" (empty string) if input index is out of bounds.

string NexusData::query_TestFlag(uint32 index);

Description Query the test flags, including fail, alarm, etc.

Valid by:

• DATA_TYP_MEASURED_PARAMETRIC
• DATA_TYP_MEASURED_FUNCTIONAL
• DATA_TYP_MEASURED_MULTI_PARAM

Return Returns a valid value if valid input index.
For example, if event is DATA_TYP_MEASURED_PARAMETRIC, then the value represents
the test flags of the current parametric test.

Returns "" (empty string) if input index is out of bounds.

string NexusData::query_TestSuite(uint32 index);

Description Query the test suite name.

Valid by:

• DATA_TYP_MEASURED_PARAMETRIC
• DATA_TYP_MEASURED_FUNCTIONAL
• DATA_TYP_MEASURED_MULTI_PARAM
• DATA_TYP_MEASURED_SCAN

Return Returns a valid value if valid input index.
For example, if event is DATA_TYP_MEASURED_PARAMETRIC, then the value represents
the test suite name of the current parametric test.

Returns "" (empty string) if input index is out of bounds.

ACS RTDI User Guide
Chapter 2 ACS Nexus

OneAPI C++ SDK

v2.3.0, July 2025 77

string NexusData::query_MeasurementName(uint32 index);

Description Query the measurement name.

Valid by:

• DATA_TYP_MEASURED_PARAMETRIC
• DATA_TYP_MEASURED_FUNCTIONAL
• DATA_TYP_MEASURED_MULTI_PARAM
• DATA_TYP_MEASURED_SCAN

Return Returns a valid value if valid input index.
For example, if event is DATA_TYP_MEASURED_PARAMETRIC, then the value represents
the measurement name of the current parametric test.

Returns "" (empty string) if input index is out of bounds.

float NexusData::query_Result(uint32 index);

Description Query the test result.

Valid by:

• DATA_TYP_MEASURED_PARAMETRIC

Return Returns a valid value if valid input index.

Returns 0.0 if input index is out of bounds.

uint32 NexusData::query_CycleCount(uint32 index);

Description Query the vector cycle count.

Valid by:

• DATA_TYP_MEASURED_FUNCTIONAL

Return Returns a valid value if valid input index.

Returns 0 if input index is out of bounds.

uint32 NexusData::query_NumberFail(uint32 index);

Description Query the vector cycle count.

Valid by:

• DATA_TYP_MEASURED_FUNCTIONAL

Return Returns a valid value if valid input index.

Returns 0 if input index is out of bounds.

ACS RTDI User Guide
Chapter 2 ACS Nexus
OneAPI C++ SDK

78 v2.3.0, July 2025

vector<string> NexusData::query_FailPins(uint32 index);

Description Query the list of failing pin bit field.

Valid by:

• DATA_TYP_MEASURED_FUNCTIONAL

Return Returns a valid value if valid input index.

Returns no element if input index is out of bounds.

string NexusData::query_VectNam(uint32 index);

Description Query the vector module pattern name.

Valid by:

• DATA_TYP_MEASURED_FUNCTIONAL

Return Returns a valid value if valid input index.

Returns "" (empty string) if input index is out of bounds.

vector<float> NexusData::query_Results(uint32 index);

Description Query the list of all test results.

Valid by:

• DATA_TYP_MEASURED_FUNCTIONAL

Return Returns a valid value if valid input index.

Returns no element if input index is out of bounds.

string NexusData::get_TestFlowName();

Description Get the test flow name.

Valid by:

• DATA_TYP_PRODUCTION_TESTFLOWSTART

• DATA_TYP_PRODUCTION_TESTFLOWEND

Return Returns a valid value if valid input index.

Returns "" (empty string) if input index is out of bounds.

string NexusData::get_DataLogText();

ACS RTDI User Guide
Chapter 2 ACS Nexus

OneAPI C++ SDK

v2.3.0, July 2025 79

Description Get the data log text.

Valid by:

• DATA_TYP_DATALOGTEXT

Return Returns a valid value in the case of the above event.

Otherwise, returns "" (empty string).

int32 NexusData::query_TotalCycleCount(uint32 index);

Description Query the total number of cycles.

Valid by:

• DATA_TYP_MEASURED_SCAN

Return Returns a valid value if valid input index.

Returns 0 if input index is out of bounds.

int32 NexusData::query_FailCycleCount(uint32 index);

Description Query the total number of failing cycles.

Valid by:

• DATA_TYP_MEASURED_SCAN

Return Returns a valid value if valid input index.

Returns 0 if input index is out of bounds.

vector<uint64> NexusData::query_PatternResults(uint32 index);

Description Query the list of pattern index results.

Valid by:

• DATA_TYP_MEASURED_SCAN

Return Returns a valid value if valid input index.

Returns no element if input index is out of bounds.

ACS RTDI User Guide
Chapter 2 ACS Nexus
OneAPI C++ SDK

80 v2.3.0, July 2025

string NexusData::query_PatternName(uint32 index);

Description Query the pattern name.

Valid by:

• DATA_TYP_MEASURED_SCAN

Return Returns a valid value if valid input index.

Otherwise returns "NOT_EXIST"

vector<uint64> NexusData::query_PinResults(uint64 index);

Description Query the list of pin index results.

Valid by:

• DATA_TYP_MEASURED_FUNCTIONAL
• DATA_TYP_MEASURED_MULTI_PARAM
• DATA_TYP_MEASURED_SCAN

Return Returns a valid value if valid input index.

Returns no element if input index is out of bounds.

string NexusData::query_PinName(uint64 index);

Description Query the pin name.

Valid by:

• DATA_TYP_MEASURED_FUNCTIONAL
• DATA_TYP_MEASURED_MULTI_PARAM
• DATA_TYP_MEASURED_SCAN

Return Returns a valid value if valid input index.

Otherwise, returns "NOT_EXIST"

ACS RTDI User Guide
Chapter 2 ACS Nexus

OneAPI C++ SDK

v2.3.0, July 2025 81

vector<uint64> NexusData::query_FailCycles(uint64 pinID);

Description Query the list of fail cycle numbers.

Valid by:

• DATA_TYP_MEASURED_FUNCTIONAL
• DATA_TYP_MEASURED_SCAN

Return Returns a valid value if valid input index.

Returns no element if input index is out of bounds.

uint32 NexusData::get_PatternCount();

Description Retrieve the total number of patterns.

Valid by:

• DATA_TYP_MEASURED_SCAN

Return Returns a valid value if by above event.

Otherwise, returns 0.

vector<string> NexusData::query_PatternLabels(uint32 index);

Description Query the list of pattern names.

Valid by:

• DATA_TYP_MEASURED_SCAN

Return Returns a valid value if valid input index.

Returns no element if input index is out of bounds.

uint32 NexusData::get_PinInfoCount();

Description Retrieve the total number of pin information.

Valid by:

• DATA_TYP_DEVICE_PIN

Return Returns a valid value if by above event.

Otherwise, returns 0.

ACS RTDI User Guide
Chapter 2 ACS Nexus
OneAPI C++ SDK

82 v2.3.0, July 2025

uint32 NexusData::query_ChannelType(uint32 index);

Description Query the channel type.

Valid by:

• DATA_TYP_DEVICE_PIN

Return Returns a valid value if valid input index.

Returns 0 if valid input index is out of bounds.

string NexusData::query_ChannelName(uint32 index);

Description Query the channel name.

Valid by:

• DATA_TYP_DEVICE_PIN

Return Returns a valid value if valid input index.

Otherwise, returns "" (empty string).

string NexusData::query_PhysicalName(uint32 index);

Description Query the name of the physical pin.

Valid by:

• DATA_TYP_DEVICE_PIN

Return Returns a valid value if valid input index.

Otherwise, returns "" (empty string).

string NexusData::query_LogicalName(uint32 index);

Description Query the name of the logical pin.

Valid by:

• DATA_TYP_DEVICE_PIN

Return Returns a valid value if valid input index.

Otherwise, returns "" (empty string).

ACS RTDI User Guide
Chapter 2 ACS Nexus

OneAPI C++ SDK

v2.3.0, July 2025 83

uint32 NexusData::query_HeadNumber(uint32 index);

Description Query the test head number.

Valid by:

• DATA_TYP_DEVICE_PIN

Return Returns a valid value if valid input index.

Returns 0 if input index is out of bounds.

uint32 NexusData::query_SiteNumber(uint32 index);

Description Query the test site number.

Valid by:

• DATA_TYP_DEVICE_PIN

Return Returns a valid value if valid input index.

Returns 0 if input index is out of bounds.

uint32 NexusData::get_MeasurementName();

Description Get the measurement name.

Valid by:

• DATA_TYP_MEASUREMENT

Return Returns a valid value if by above event.

Otherwise, returns "" (empty string).

uint32 NexusData::get_GroupCount();

Description Get the total count of parallel groups.

Valid by:

• DATA_TYP_MEASUREMENT

Return Returns a valid value if by above event.

Otherwise, returns 0.

ACS RTDI User Guide
Chapter 2 ACS Nexus
OneAPI C++ SDK

84 v2.3.0, July 2025

string NexusData::query_GroupName(uint32 index);

Description Query the name of parallel groups.

Valid by:

• DATA_TYP_MEASUREMENT

Return Returns a valid value if valid input index.

Returns "" (empty string) if input index is out of bounds.

int32 NexusData::query_GroupBypassed(uint32 index);

Description Query whether the parallel group was bypassed.

Valid by:

• DATA_TYP_MEASUREMENT

Return If valid input index, returns one of the following:

• 0: bypassed is set to ‘false’
• 1: bypassed is set to ‘true’
• -1: bypassed is not set

Returns -1 if input index is out of bounds.

vector<uint32> NexusData::query_GroupSites(uint32 index);

Description Query the number of the site where the parallel group was bypassed.

Valid by:

• DATA_TYP_MEASUREMENT

Return Returns a valid value if valid input index.

Returns no element (meaning that all sites were bypassed) if input index is out of bounds.

uint32 NexusData::get_SequenceCount();

Description Get the total count of operating sequence call.

Valid by:

• DATA_TYP_MEASUREMENT

Return Returns a valid value if by above event.

Otherwise, returns 0.

ACS RTDI User Guide
Chapter 2 ACS Nexus

OneAPI C++ SDK

v2.3.0, July 2025 85

string NexusData::query_SequenceName(uint32 index);

Description Query the name of operating sequence call.

Valid by:

• DATA_TYP_MEASUREMENT

Return Returns a valid value if valid input index.

Returns "" (empty string) if input index is out of bounds.

int32 NexusData::query_SequenceBypassed(uint32 index);

Description Query whether the operating sequence call was bypassed.

Valid by:

• DATA_TYP_MEASUREMENT

Return If valid input index, returns one of the following:

• 0: bypassed is set to ‘false’
• 1: bypassed is set to ‘true’
• -1: bypassed is not set

Returns -1 if input index is out of bounds.

vector<uint32> NexusData::query_SequenceSites(uint32 index);

Description Query the number of the site where the operating sequence call was bypassed.

Valid by:

• DATA_TYP_MEASUREMENT

Return Returns a valid value if valid input index.

Returns no element (meaning that all sites were bypassed) if input index is out of bounds.

vector<uint32> NexusData::get_SequenceGroupResults(uint32 index);

Description Query the list of unique "Group ID" for the specific sequence.

Valid by:

• DATA_TYP_MEASUREMENT

Return Returns a valid value if valid input index.

Returns no element if input index is out of bounds.

ACS RTDI User Guide
Chapter 2 ACS Nexus
OneAPI C++ SDK

86 v2.3.0, July 2025

string NexusData::query_SequenceGroupName(uint32 groupID);

Description Query the name of the parallel group that belongs to the current sequence.

Valid by:

• DATA_TYP_MEASUREMENT

Return Returns a valid value if valid input index.

Returns "" (empty string) if input index is out of bounds.

int32 NexusData::query_SequenceGroupBypassed(uint32 groupID);

Description Query whether the parallel group was bypassed.

Valid by:

• DATA_TYP_MEASUREMENT

Return If valid input index, returns one of the following:
• 0: bypassed is set to ‘false’
• 1: bypassed is set to ‘true’
• -1: bypassed is not set

Returns -1 if input index is out of bounds.

vector<uint32> NexusData::query_SequenceGroupSites(uint32 groupID);

Description Query the number of the site where the parallel group was bypassed.

Valid by:

• DATA_TYP_MEASUREMENT

Return Returns a valid value if valid input index.

Returns no element (meaning that all sites for the current sequence were bypassed) if input index
is out of bounds.

ACS RTDI User Guide
Chapter 2 ACS Nexus

OneAPI C++ SDK

v2.3.0, July 2025 87

 class oneapi::Command
This class is used to schedule the control capability of ACS Nexus through the oneapi::Interface:: sendCommand. Each
time the interface is called, an object of oneapi::Command needs to be created and passed in to the interface as an
argument, as shown in the example below.

oneapi::Command cmd;
cmd.name = “PAUSE”;
cmd.reason = “Yield is lower than 80 percent.”;
oneapi::TestCell tc;
int res = oneapi::Interface::sendCommand(tc, cmd);
if(res != 0)
 cout << "Send command fail. code = " << res << endl;

Member

string name;

Description The command name should be one of the following:

• PAUSE
• STOP
• SetNewBin
• SetNewBinConfig
• SiteActivityControl Set
• SiteActivityControl Config

ACS RTDI User Guide
Chapter 2 ACS Nexus
OneAPI C++ SDK

88 v2.3.0, July 2025

string param;

Description The necessary parameters for this command.

This variable is string type, so all information must be assembled into a string. For example:

oneapi::Command cmd;
cmd.name = “SetNewBinConfig”;
cmd.param = “Timeout 2 TimeoutAction Abort IllBinAction AltBin
IllAltBin 9”;

PAUSE
• None

STOP
• None

SetNewBin
• Mapping of Site and Bin

SetNewBinConfig
• Enabled
o 0
o 1

• Timeout (in seconds)

• TimeoutAction
o Abort
o OriginalBin
o TimeoutBin

• BinningHistoryDir (in string)

• TimeoutBin (in integer)

• IllAltBin (in integer) : illegal alt bin

• IllBinAction : illegal bin action
o Abort
o AltBin

• MinValidAltBin (in integer)

• MaxValidAltBin (in integer)

See Table 2-5 for additional descriptive information for SetNewBinConfig.

NOTE: Below are additional considerations for using SetNewBinConfig and SetNewBin.

• Bin ID "-1" is special for the Equipment Driver which is loaded with this BinControl
function. If this number is set as AltBin or IllAltBin, the process in the driver changes
to "Abort."

• If Bin ID "-1" is dedicated into either or both MinValidAltBin /
MaxValidAltBin, the illegal bins checking process is skipped. The specified Bin ID
with SetNewBin command evaluates in the driver process.

ACS RTDI User Guide
Chapter 2 ACS Nexus

OneAPI C++ SDK

v2.3.0, July 2025 89

• Logical inconsistencies about configuration by SetNewBinConfig command are not
evaluated.

SiteActivityControl Set
• Variable name and value

SiteActivityControl Config
• Enabled
o 0
o 1

• Timeout (in seconds)

• TimeoutAction
o Abort
o Ignore

• Sync
o 0
o 1

• StatusQuery
o None
o Lot

o Device

See Table 2-6 for additional descriptive information for SiteActivityControl Config.

string reason;

Description The reason for sending this command to ACS Nexus. The reason will be displayed in the ACS
Nexus GUI.

ACS RTDI User Guide
Chapter 2 ACS Nexus
OneAPI C++ SDK

90 v2.3.0, July 2025

Table 2-5. SetNewBinConfig Descriptions

Item Description

Enabled Defines whether the Bin Control feature is enabled or not enabled.

Timeout Defines timeout value in seconds.

TimeoutAction Defines the action caused by timeout.

TimeoutBin Defines the special Bin which is sent when timeout is detected.

BinningHistoryDir Defines the directory path for binning history file.

IllBinAction Defines the action caused by illegal bins specified.

IllAltBin Defines the special Bin where the specified illegal bins are sent.

MinValidAltBin Defines the lower bin code of the enabled range.

MaxValidAltBin Defines the higher bin code of the enabled range.

Table 2-6. SiteActivityControl Config Descriptions

Item Description

Enabled Defines whether the test site is activated or deactivated. 1 means activated.

Timeout Defines timeout value in seconds.

TimeoutAction Defines the action to take if timeout occurs. The actions to take are:
• Abort - aborts Lot
• Ignore - continues with the current setting

Sync Defines whether synchronous mode or asynchronous mode is enabled. 0 means
asynchronous mode is enabled. If asynchronous mode is set, the Timeout configuration
will be ignored.

StatusQuery Defines checking the difference between the driver status and handler status regarding
the activated site. Values include:

• NONE – never synchronized with handler setting
• LOT – only lot start block
• DEVICE – every touchdown (default setting)

ACS RTDI User Guide
Chapter 2 ACS Nexus

OneAPI C++ SDK

v2.3.0, July 2025 91

 class oneapi::AppInfo
This class describes the application information which is filled in by the developer and passed in as an argument when
calling oneapi::Interface::connect. It will be used as the identification of this OneAPI client in the interaction with ACS
Nexus. For example, when ACS Nexus receives a control command, it will know who sent the command.

Member

string name;

Description The name of this application.

string vendor;

Description The vendor of this application.

string version;

Description The version of this application.

 class oneapi::QueryResponse
This class describes the return information when calling the DFF data reading interfaces.

Member

int code;

Description Error code for calling the interface.

• 0: invoke success
• 1: common error
• 2: connection error

string result;

Description Result for calling the interface.

• jobID
• status: COMPLETE, RUNNING, FAILED
• DFF data string

string errmsg;

Description Detail error information when calling the interface.

The error message is null if invoke interface is successful.

ACS RTDI User Guide
Chapter 2 ACS Nexus
OneAPI C++ SDK

92 v2.3.0, July 2025

 class oneapi::DFFData
This is a set of static functions which are used for Data Reading of DFF. During the entire lifecycle of the application, no
object of this class needs to be generated.

Member

static const int SUCCEED;

Description The return code of query interfaces. Value is 0.

string vendor;

Description The return code of query interfaces. Value is 1.

Functions

static oneapi::QueryResponse createQueryRequest(const std::string& lotID, const
std::string& deviceIDKey, const std::string& deviceIDVal, const std::string&
testNumber);

Description Create the query request to the ACS Unified Server.

Parameter Input:

• Lot ID
• DeviceIDKey
o "STDF.PART_TXT"
o "STDF.PART_ID"

• deviceIDVal: The value corresponding to deviceIDKey
• Test number

NOTE:

When the deviceIDKey is any other value except STDF.PART_TXT” and “STDF.PART_ID,
the device id will be part_id.

Return QueryResponse res

res.result: The value express jobID.

ACS RTDI User Guide
Chapter 2 ACS Nexus

OneAPI C++ SDK

v2.3.0, July 2025 93

static oneapi::QueryResponse createRawQueryRequest(const std::string& sql);

Description Create the raw query request to ACS Unified Server.

Parameter Input:

• SQL statement

NOTE: Make sure to enter a valid SQL query.

Return QueryResponse res

res.result: The value express jobID.

static oneapi::QueryResponse getQueryTaskStatus(const std::string& jobID);

Description Get the status of the query task.

Parameter Input:

• Lot ID

Return QueryResponse res

res.result: The value express status.

• “COMPLETE”
• “FAILED”
• “RUNNING”

NOTE:

When the result is RUNNING, you need to invoke this interface again after a period of time until
the result is COMPLETE or FAILED.

static oneapi::QueryResponse getQueryResult(const std::string& jobID, const std::string&
format);

Description Get the query result (DFFData).

Parameter Input:

• jobID
• format

o CSV
o JSON

NOTE:

If the format is any other value except CSV or JSON, the data format will be JSON.

Return QueryResponse res

res.result: The value express DFF data string.

ACS RTDI User Guide
Chapter 2 ACS Nexus
OneAPI C++ SDK

94 v2.3.0, July 2025

 class oneapi::TestCell
This class describes the information of the Tester (which is provided by oneapi::Monitor callback functions) and is used
as the identification of the data source when consuming Nexus data. For example, when data is received, ACS Nexus can
know which Tester sent the data.

Member

String testerId;

Description The hostname of the tester.

string testerIP;

Description The IP of the tester.

 Configuration
As a dynamic library, OneAPI will statically read the contents of the environment variable for initialization when the
application process is started. The environment variable contents are described in Table 2-7 below.

Table 2-7. OneAPI Environment Variable Description

Item Description

ONEAPI_DEBUG Developers must include and call the interface provided by OneAPI in their application.
OneAPI will record status and information when executing these commands. This
environment variable is used to set the output mode of the records.

Values:

0 -- no output
1 -- enable output INFO level logs to console
2 -- enable output INFO level logs to file
3 -- enable output INFO level logs to both console and file
4 -- enable output DEBUG level logs to console
5 -- enable output DEBUG level logs to file
6 -- enable output DEBUG level logs to both console and file

NOTE:

The path of local log file is fixed to ${home}/.log/. The name follows the rule indicated
below:

ACS_ONEAPI_yyyy-mm-dd.log. (for example, ACS_ONEAPI_2023-02-21.log)

To write log files successfully, ensure that the running environment of the application meets
one of the following conditions:

• ${home}/.log/ folder does not exist, and the application has permission to create it.
• ${home}/.log/ folder exists, and the application has permission to write log file in

it.

ACS RTDI User Guide
Chapter 2 ACS Nexus

OneAPI Python SDK

v2.3.0, July 2025 95

 OneAPI Python SDK
OneAPI is the standard bi-directional communication interface that enable containerized/non-containerized applications
to consume real time data from (and send control command to) ACS Nexus. An application developer can use OneAPI to
develop an application to consume the real time data and send control instructions during production testing. ACS Nexus
invokes a callback function of the containerized application per event.

In this version of OneAPI, only C++ SDK and Python SDK are supported. This section describes Python SDK usage.

 General Information
Package Contents
OneAPI Python SDK provides programming interfaces for the user to develop applications. All contents (see below) are
packaged in a tar.gz file. Note that the library Python 3.9, 3.10, and 3.11 library files are in different directories.

oneAPI_py3.9 (oneAPI_py3.10 and oneAPI_py3.11 have the same file structure)
|-- bin
| |-- AdvantestLogging.py
| |-- oneapi_DFF.py
| |-- oneapi.py
| |-- liboneAPI.so
| |-- main.py
| |-- requirements.txt
| |-- sample.py
|-- build_base_image.sh
|-- centos.Dockerfile.example (for py3.9 only)
|-- examples
| |-- main.py
| |-- sample.py
|-- ubuntu.Dockerfile.example

Table 2-8. OneAPI Python Package Content Descriptions

Content Description

bin This folder contains all library files provided by OneAPI for Python. Developers
need to link these files and include them in the application release-package or
image.

examples This folder includes example code that demonstrates the use of OneAPI to
developers.

build_base_image.sh This script provides a reference for users on how to build an image with
Dockerfile.

centos.Dockerfile.example
ubuntu.Dockerfile.example

NOTE: centos.Dockerfile.example is for python 3.9 only.
These files provide a reference for users on how to build a OneAPI Application
image based on the base image. Users need to rewrite Dockerfile according to
their actual situation. Refer to the comments in this file for specific rewriting
methods.

ACS RTDI User Guide
Chapter 2 ACS Nexus
OneAPI Python SDK

96 v2.3.0, July 2025

Environment Requirements
Users can develop containerized applications running on the ACS Edge Server or containerized/non-containerized
applications running on a test floor server that is based on OneAPI Python SDK. For both scenarios, specific
environment conditions are required, as noted below.

Application Development Environment

Python 3.9 SDK

Supported OS
(any of)

• Red Hat 7
• CentOS 7
• Ubuntu 22.04

Necessary Software • Python 3.9
• Python module: jsonschema

Python 3.10 SDK

Supported OS • Ubuntu 22.04

Necessary Software • Python 3.10
• Python module: jsonschema

Python 3.11 SDK

Supported OS Ubuntu 22.04

Necessary Software • Python 3.11
• Python module: jsonschema

Application Operating Environment

A successful connection at least needs to ensure that the network between Application
Operating environment and ACS Nexus operation environment is enabled, and other
dependent guarantees, such as ports availability, firewall permission, etc.

ACS RTDI User Guide
Chapter 2 ACS Nexus

OneAPI Python SDK

v2.3.0, July 2025 97

 Usage Scenario
Basic and Advanced Test Cell Control

Table 2-9. Basic and Advanced Control Commands

Command Description

PAUSE This is a basic control command that provides real-time pause of wafer testing or
final testing when user applications identify production issues. Actions taken after a
pause are determined by the user (for example, automatic actions performed by other
tools or manual action by the operator).

STOP This is a basic control command that provides real-time stop of wafer testing or final
testing when user applications identify production issues.

Bin Control Bin Control is advanced control command:

• /F 1: SetNewBin
parameter: New bin of each site

• I/F 2: SetNewBinConfig
parameter: Enabled flag, time out, etc.

ACS RTDI User Guide
Chapter 2 ACS Nexus
OneAPI Python SDK

98 v2.3.0, July 2025

Real Time Test Cell Data Collection
Comprehensive real time test cell data collection enables applications to perform data analysis in real time. Below is a list
of OneAPI data types and a brief description of information that can be collected for each data type.

Table 2-10. OneAPI Data Types

Data Type Information Collected

PRODUCTION_LOTSTART Lot Start event includes the following information:
• Lot start time
• Lot ID, Sublot ID
• Test type
• Site list
• Prober/Handler, LB

. . .

PRODUCTION_LOTEND Lot End event includes the following information:
• Lot complete time
• Lot ID

. . .

PRODUCTION_WAFERSTART Wafer Start event includes the following information:
• Wafer start time
• Wafer ID
• Wafer layout information

. . .

PRODUCTION_WAFEREND Wafer End event includes the following information:
• Wafer complete time
• Wafer ID

. . .

PRODUCTION_TESTSTART Test Start event includes the following information:
• Test start time
• Site list

PRODUCTION_TESTEND Test End event includes the following information:
• Test complete time
• Bin result of each site
• Part ID of each site
• X/Y Coordinates of each site
• Test time

. . .

PRODUCTION_TESTFLOWSTART Test Flow Start event includes the following information:
• Test flow start time
• Test flow name

ACS RTDI User Guide
Chapter 2 ACS Nexus

OneAPI Python SDK

v2.3.0, July 2025 99

PRODUCTION_TESTFLOWEND Test Flow End event includes the following information:
• Test flow end time
• Test flow name

MEASURED_PARAMETRIC Parametric Test Result event includes:
• Test method information: number, name, lo/hi limit, unit
• Result of each site: pass/fail, measured value, etc.

. . .

MEASURED_FUNCTIONAL Functional Test Result event includes:
• Test method information: number, name
• Result of each site: pass/fail, cycle count, fail-pins etc.

MEASURED_MULTI_PARAM Multi-Parametric Test Result event includes:
• Test method information: number, name, lo/hi limit, unit
• Multiple measured values of each site

. . .

MEASURED SCAN Scan Test Result event includes:

• Test method info: number

• Result of each Site: total cycle count, fail cycle count

• Result of each Pattern: name, pins information

• Result of each Pin: name, failing cycles

 …

DEVICE Device data includes:
• Test Program info: name, path, pin config file etc.
• Bin table: soft-bin, hard-bin

• Pin data: index, type, name, number etc.
• Pattern data: index, name, pattern files etc.

USERDEFINED User Defined data includes:

• User specified variable name and its value

DATALOGTEXT Datalog Text data includes:
• Datalog text time stamp
• Datalog text expression

ACS RTDI User Guide
Chapter 2 ACS Nexus
OneAPI Python SDK

100 v2.3.0, July 2025

 Python API
This is a set of static functions which are used for communication between the user application and ACS Nexus. During
the lifecycle of the application, no instance of this class needs to be generated.

 class Interface

def connect(me: AppInfo, IP: str, cmdPort: int = 0, dataPort: int = 0) -> int

Description Initiate the request to connect to ACS Nexus with the specified address. Normally, the
application just needs to input AppInfo and the IP address, in which case OneAPI will read
the port information from the configuration file oneAPI_conf.ini.

Connection must be established before sending control commands or receiving data.

Parameter Input:

• Information of the application
• Whether to enable Nexus Data Streaming and Control
• Whether to enable TPService for communication with NexusTPI

Return 0 – initial connection succeeded

-1 – failed to enable Nexus Data Streaming and Control

-2 – failed to enable TPService
-3 – unknown location
-4 – not support

NOTES:

The return value 0 does not mean a connection with ACS Nexus has been established.

Another interface getConnectionState() can provide the current connection state of the
command channel.

For a return value of -1, a possible reason could be failed to connect to nexus-broker.

For a return value of -2, a possible reason could be TPService port is occupied. (the default
TPService port is 21122).

For a return value of -3, a possible reason could be OneAPI runs in an unknown location.

For a return value -4, a possible reason could be OneAPI does not support the corresponding
feature in the current location.

For any exception case, all enabled connection will be disconnected.

def disconnect() -> int

Description Disconnects from ACS Nexus.

Return 0 disconnect succeeded

-1 disconnect failed

ACS RTDI User Guide
Chapter 2 ACS Nexus

OneAPI Python SDK

v2.3.0, July 2025 101

def registerMonitor(myMonitor: Monitor) -> None

Description Registers the event monitor to receive real-time data through a callback function. For additional
details, refer to class Monitor.

Return 0 – disconnect success

-1 – disconnect fail

def getConnectionState(cmdChannel: int) -> None

Description Get the connection status of the command channel.

For command channel, the status value is 0 only when the current status is established, and
communication is available. Otherwise, the status value is – 1.

The application should determine whether the related API can be executed according to the
connection state. For example, when sending a control command, if the status of the
command channel is not 0, the command will not be sent to ACS Nexus.

Parameter Output:

The status of command channel (for sending command to ACS Nexus).

def sendCommand(tc: TestCell, cmd: Command) -> int

Description Send the command to the connected ACS Nexus.

The return value of this interface indicates whether the action of sending command is successful.
ACS Nexus will execute the command asynchronously after receiving the command.

Parameter Input:

• TestCell information (refer to class TestCell)
• Command information (refer to class Command)

Return 0 – command successfully sent to ACS Nexus

-1 – failed to send command to ACS Nexus

-3 – unknown location

-4 – not support

ACS RTDI User Guide
Chapter 2 ACS Nexus
OneAPI Python SDK

102 v2.3.0, July 2025

 class Monitor

def consumeData(tc: TestCell, data: NexusData) -> None

Description This is a pure virtual function that needs to be inherited and overridden. As a callback
function, it will be triggered every time ACS Nexus data arrives.

NOTE1: When the function is triggered, the thread will be blocked. It cannot be triggered
again until the callback function completes its processing logic and returns.
Therefore, attention should be given to the efficiency of processing or
consideration given to implementing asynchronous processing in the code.

NOTE 2: You must call the corresponding get and query interfaces inside this function and
save the values, otherwise the data will be cleared.

Parameter • TestCell information (refer to class TestCell)
• ACS Nexus data (refer to Class class NexusData)

def consumeTPSend(tc: TestCell, data: str) -> None

Description This is a function that needs to be inherited and overridden. As a callback function, it will be
triggered every time TP sends data via NexusTPI.

NOTE:

When the function is triggered, the thread will be blocked. It cannot be triggered again until
the callback function completes its processing logic and returns. Therefore, attention should
be given to the efficiency of processing or consideration given to implementing
asynchronous processing in the code.

Parameter • TestCell information (refer to class TestCell)
• Data type is string

def consumeTPRequest (tc: TestCell, request: str) -> str

Description This is a function that needs to be inherited and overridden. As a callback function, it will be
triggered every time TP initiates a request via NexusTPI.

NOTE:

When the function is triggered, the thread will be blocked. It cannot be triggered again until
the callback function completes its processing logic and returns. Therefore, attention should
be given to the efficiency of processing or consideration given to implementing
asynchronous processing in the code.

Parameter • TestCell information (refer to class TestCell)
• Request type is string in JSON format

Return string: after handle request, return your response to NexusTPI.

ACS RTDI User Guide
Chapter 2 ACS Nexus

OneAPI Python SDK

v2.3.0, July 2025 103

 enum DataType

Description Indicate the type of ACS Nexus data.

• DATA_TYP_PRODUCTION_LOTSTART
• DATA_TYP_PRODUCTION_WAFERSTART
• DATA_TYP_PRODUCTION_TESTSTART
• DATA_TYP_PRODUCTION_TESTEND
• DATA_TYP_PRODUCTION_WAFEREND
• DATA_TYP_PRODUCTION_LOTEND
• DATA_TYP_MEASURED_PARAMETRIC
• DATA_TYP_MEASURED_FUNCTIONAL
• DATA_TYP_MEASURED_MULTI_PARAM
• DATA_TYP_DEVICE
• DATA_TYP_USERDEFINED
• DATA_TYP_FILE
• DATA_TYP_PRODUCTION_TESTFLOWSTART
• DATA_TYP_PRODUCTION_TESTFLOWEND
• DATA_TYP_DATALOGTEXT
• DATA_TYP_IDENTIFICATION
• DATA_TYP_DEVICE_PIN
• DATA_TYP_MEASURED_SCAN
• DATA_TYP_DEVICE_PATTERN
• DATA_TYP_MEASUREMENT

ACS RTDI User Guide
Chapter 2 ACS Nexus
OneAPI Python SDK

104 v2.3.0, July 2025

 class NexusData
Each time the callback function consumeData is triggered, a reference to the NexusData object will be passed in as a
parameter. Detailed values can be obtained by calling the member functions of this class.

NOTE: The corresponding member functions must be called according to the type of data to obtain the current valid
value.

[Production Event] Start of Lot
DataType DATA_TYP_PRODUCTION_LOTSTART
Occurs: Once at the beginning of the first touchdown per LOT
Contains: All the global information for this LOT

Member Function Return Value(s) Description

get_Timezone() -> int32 The time zone where ACS Nexus is running
get_SetupTime() -> uint64 Date and time when the test program was started (in microseconds)
get_TimeStamp() -> uint64 Date and time when the first part was tested (in microseconds)
get_StationNumber() -> int32 Tester station number
get_ModeCode() -> str Test mode code
get_RetestCode() -> str Lot retest code
get_ProtectionCode() -> str Data protection code
get_BurnTimeMinutes() -> int32 Burn-in time (in minutes)
get_CommandCode() -> str Command mode code of the tester
get_LotId() -> str Lot ID
get_PartType() -> str Part type or product ID
get_NodeName() -> str Hostname of the tester system controller
get_TesterType() -> str Tester type
get_JobName() -> str Test program name
get_JobRevision() -> str Test program revision number
get_SublotId() -> str Sublot ID
get_OperatorName() -> str Operator name or ID at setup time
get_TesterosType() -> str Tester software type
get_TesterosVersion() -> str Tester software version number
get_TestType() -> str Type of Lot (PACKAGE_TEST / WAFER_TEST)
get_TestStepCode() -> str Test phase or step code
get_TestTemperature() -> str Test temperature
get_UserText() -> str User-defined text
get_AuxiliaryFile() -> str Name of auxiliary data file
get_PackageType() -> str Package type
get_FamilyId() -> str Product family ID
get_DateCode() -> str Date code
get_FacilityId() -> str Test facility ID
get_FloorId() -> str Test floor ID

ACS RTDI User Guide
Chapter 2 ACS Nexus

OneAPI Python SDK

v2.3.0, July 2025 105

get_ProcessId() -> str Fabrication process ID
get_OperationFreq() -> str Operation frequency or step
get_SpecName() -> str Test specification name
get_SpecVersion() -> str Test specification version number
get_FlowId() -> str Testflow ID
get_SetupId() -> str Test setup ID
get_DesignRevision() -> str Device design revision
get_EngineeringLotId() -> str Engineering lot ID
get_RomCode() -> str ROM code ID
get_SerialNumber() -> str Tester serial number
get_SupervisorName() -> str Supervisor name or ID
get_HeadNumber() -> uint32 Test head number
get_SiteGroupNumber() -> uint32 Site group number (station number)
get_SiteCount() -> uint32 Number of active sites described in this record
get_TotalHeadSiteList() -> list Array of test site numbers with head information
get_ProberHandlerType() -> str Handler or prober type
get_ProberHandlerId() -> str Handler or prober ID
get_ProbecardType() -> str Probe card type
get_ProbecardId() -> str Probe card ID
get_LoadboardType() -> str DUT board type
get_LoadboardId() -> str DUT board ID
get_DibType() -> str DIB board type
get_DibId() -> str DIB board ID
get_CableType() -> str Interface cable type
get_CableId() -> str Interface cable ID
get_ContactorType() -> str Handler contactor type
get_ContactorId() -> str Handler contactor ID
get_LaserType() -> str Laser type
get_LaserId() -> str Laser ID
get_ExtraEquipType() -> str Extra equipment type
get_ExtraEquipId() -> str Extra equipment ID

ACS RTDI User Guide
Chapter 2 ACS Nexus
OneAPI Python SDK

106 v2.3.0, July 2025

[Production Event] End of Lot
DataType DATA_TYP_PRODUCTION_LOTEND
Occurs: Once at the ending of the last touchdown per LOT
Contains: Information that compliments the Lot

Member Function Return Value Description

get_TimeStamp() -> uint64 Date and time last part of the lot was tested (in microseconds)
get_DisPositionCode() -> str Lot disposition code
get_UserDescription() -> str Lot description supplied by the user
get_ExecDescription() -> str Lot description supplied by the exec

[Production Event] Start of Wafer
DataType DATA_TYP_PRODUCTION_WAFERSTART
Occurs: Once at the beginning of the first touchdown per WAFER
Contains: All the configuration information for the tested wafer

Member Function Return Value Description

get_WaferSize() -> float Diameter of wafer in WF_UNITS
get_DieHeight() -> float Height of die in WF_UNITS
get_DieWidth() -> float Width of die in WF_UNITS
get_WaferUnits() -> uint32 Unit for wafer and die dimensions
get_WaferFlat() -> str Orientation of wafer flat
get_CenterX() -> int32 X-coordinate of center die on wafer
get_CenterY() -> int32 Y-coordinate of center die on wafer
get_PositiveX() -> str Positive X-direction of wafer
get_PositiveY() -> str Positive Y-direction of wafer
get_HeadNumber() -> uint32 Test head number
get_SiteGroupNumber() -> uint32 Site group number
get_TimeStamp() -> uint64 Date and time when the first part of wafer was tested (in

microseconds)
get_WaferId() -> str Wafer ID

ACS RTDI User Guide
Chapter 2 ACS Nexus

OneAPI Python SDK

v2.3.0, July 2025 107

[Production Event] End of Wafer
DataType DATA_TYP_PRODUCTION_WAFEREND
Occurs: Once at the ending of the last touchdown per WAFER
Contains: The result information for the tested wafer

Member Function Return Value Description

get_HeadNumber() -> uint32 Test head number
get_SiteGroupNumber() -> uint32 Site group number
get_TimeStamp() -> uint64 Date and time when the last part of wafer was tested (in

microseconds)
get_TestedCount() -> uint32 Number of tested parts
get_RetestedCount() -> uint32 Number of retested parts
get_GoodCount()) -> uint32 Number of tested parts that have passed
get_WaferId() -> str Wafer ID
get_UserDescription() -> str Wafer description supplied by user
get_ExecDescription() -> str Wafer description supplied by exec

[Production Event] End of Test
DataType DATA_TYP_PRODUCTION_TESTEND
Occurs: Once at the ending of each touchdown
Contains: Site, part, and result information for this touchdown

Member Function Return Value Description

get_TimeStamp() -> uint64 Date and time when the part completes test (in
microseconds)

get_ResultCount() -> uint32 Count of test result
query_HeadSite(uint32 index) -> uint32 Test site number with head information
query_PartFlag(uint32 index) -> uint32 Part information flags
query_SBinResult(uint32 index) -> uint32 Software bin
query_HBinResult(uint32 index) -> uint32 Hardware bin
query_XCoord(uint32 index) -> int32 Wafer X-coordinate
query_YCoord(uint32 index) -> int32 Wafer Y-coordinate
query_TestTime(uint32 index) -> uint32 Elapsed test time in microseconds
query_PartId(uint32 index) -> str Part identification
query_PartText(uint32 index) -> str Part description text

ACS RTDI User Guide
Chapter 2 ACS Nexus
OneAPI Python SDK

108 v2.3.0, July 2025

[Production Event] Start of Test
DataType DATA_TYP_PRODUCTION_TESTSTART
Occurs: Once at the beginning of each touchdown
Contains: Site information for this touchdown

Member Function Return Value Description

get_TimeStamp() -> uint64 Date and time when the part starts to test (in microseconds)
get_HeadSiteList() -> list Array of test site number with head information
query_HeadSite(index: uint32) ->
uint32

Test site number with head information

query_XCoord(index: uint32) -> int32 Wafer X-coordinate
query_YCoord(index: uint32) -> int32 Wafer Y-coordinate

[Production Event] Start of Test Flow
DataType DATA_TYP_PRODUCTION_TESTFLOWSTART
Occurs: Once at the beginning of each test flow
Contains: Test flow name

Member Function Return Value Description

get_TimeStamp() -> uint64 Date and time when the test flow starts (in microseconds)
get_TestFlowName() -> str Test flow name

[Production Event] End of Test Flow
DataType DATA_TYP_PRODUCTION_TESTFLOWEND
Occurs: Once at the ending of each test flow
Contains: Test flow name

Member Function Return Value Description

get_TimeStamp() -> uint64 Date and time when the test flow completes (in microseconds)
get_TestFlowName() -> str Test flow name

ACS RTDI User Guide
Chapter 2 ACS Nexus

OneAPI Python SDK

v2.3.0, July 2025 109

[Measured Value] Parametric Test Result
DataType DATA_TYP_MEASURED_PARAMETRIC
Occurs: Once per parametric test item during the test of each touchdown
Contains: Results information for all tested sites, and basic information of the test item

Member Function Return Value Description

get_ResultCount() -> uint32 Count of result for the test item
query_HeadSite(uint32 index) -> uint32 Test site number with head information
query_TestNumber(uint32 index) -> uint32 Test number
query_TestText(uint32 index) -> str Test description text or label1
query_LowLimit(uint32 index) -> float Low test limit value
query_HighLimit(uint32 index) -> float High test limit value
query_Unit(uint32 index) -> str Test units
query_TestFlag(uint32 index) -> str Test flags (fail, alarm, etc.)
query_Result(uint32 index) -> float Test result
query_TestSuite(uint32 index) -> str Test suite name
query_MeasurementName(index: uint32) ->
str

The unique fully qualified name of measurement

1 In SmarTest 7, the priority is the test comment, followed by "Test suite name: test name." If there is a pin name, it will be "Test suite
name: test name : pin name." In SmarTest 8, it will be always the test descriptor.

[Measured Value] Functional Test Result
DataType DATA_TYP_MEASURED_FUNCTIONAL
Occurs: Once per functional test item during the test of each touchdown
Contains: Results information for all tested sites, and basic information of the test item

Member Function Return Value Description

get_ResultCount() -> uint32 Count of result for the test item
query_HeadSite(uint32 index) -> uint32 Test site number with head information
query_TestNumber(uint32 index) -> uint32 Test number
query_TestText(uint32 index) -> str Test description text or label
query_TestFlag(uint32 index) -> str Test flags (fail, alarm, etc.)
query_CycleCount(uint32 index) -> uint32 Vector cycle count
query_NumberFail(uint32 index) -> uint32 The number of logic pin names with one or more failures
query_PinResults(index: uint64) -> list List of fail Pin index which belong to the given Result

index
query_PinName(pinID: uint64) -> str Pin name
query_FailCycles(pinID: uint64) -> list List of fail cycle numbers which belong to the given Pin
query_VectNam(index: uint32) -> str Vector module pattern name
query_TestSuite(uint32 index) -> str Test suite name
query_MeasurementName(index: uint32) ->
str

The unique fully qualified name of measurement

ACS RTDI User Guide
Chapter 2 ACS Nexus
OneAPI Python SDK

110 v2.3.0, July 2025

[Measured Value] Multiple-Result Parametric Test Record
DataType DATA_TYP_MEASURED_MULTI_PARAM
Occurs: Once per multiple-result parametric test item during the test of each touchdown
Contains: Results information for all tested sites, and basic information of the test item

Member Function Return Value Description

get_ResultCount() -> uint32 Count of result for the test item
query_HeadSite(uint32 index) -> uint32 Test site number with head information
query_TestNumber(uint32 index) -> uint32 Test number
query_TestText(uint32 index) -> str Test description text or label
query_LowLimit(uint32 index) -> float Low test limit value
query_HighLimit(uint32 index) -> float High test limit value
query_Unit(uint32 index) -> str Test units
query_TestFlag(uint32 index) -> str Test flags (fail, alarm, etc.)
query_Results(uint32 index) -> list List of Test results which belong to the given Result

index
query_PinResults(index: uint64) -> list List of Pin index which belong to the given Result index
query_PinName(pinID: uint64) -> str Pin name
query_TestSuite(uint32 index) -> str Test suite name
query_MeasurementName(index: uint32) ->
str

The unique fully qualified name of measurement

[Notify] Scan Test Result
DataType DATA_TYP_MEASURED_SCAN
Occurs: Once per scan test item during the test of each touchdown
Contains: Results information for all tested sites, and basic information of the test item

Member Function Return Value Description
get_ResultCount() -> uint32 Count of result for the test item
query_HeadSite(index: uint32) -> uint32 Test site number with head information
query_TestNumber(index: uint32) -> uint32 Test number
query_TestText(index: uint32) -> str Test description text or label
query_TestFlag(index: uint32) -> str Test flags (fail, alarm, etc.)
query_TotalCycleCount(index: uint32) ->
int32

Total number of cycles

query_FailCycleCount(index: uint32) -> int32 Total number of failing cycles
query_OpSequence(index: uint32) -> str Operating sequence
query_PatternResults(index: uint32) -> list List of pattern index which belong to the given Result
query_PatternName(patternID: uint64) -> str Pattern name
query_PinResults(index: uint64) -> list List of pin index which belong to the given Pattern
query_PinName(pinID: uint64) -> str Pin name

ACS RTDI User Guide
Chapter 2 ACS Nexus

OneAPI Python SDK

v2.3.0, July 2025 111

query_FailCycles(pinID: uint64) -> list List of fail cycle numbers which belong to the given
Pin

query_TestSuite(uint32 index) -> str Test suite name
query_MeasurementName(index: uint32) -> str The unique fully qualified name of measurement

[Device Data]
DataType DATA_TYP_DEVICE
Occurs: Once for each lot, when all the required data collection is completed
Contains: Device information

Member Function Return Value Description

get_TestProgramDir() -> str The absolute path of the folder of the active test program
get_TestProgramName() -> str The fully qualified name of the active test program
get_TestProgramPath()) -> str The absolute path of the active test program file
get_PinConfig() -> str The fully qualified name of the active DUT board

description file
get_ChannelAttribute() -> str The fully qualified name of the active Channel attributes file
get_BinInfoCount() -> uint32 Count of defined soft bin of the active test program
query_SBinNumber(uint32 index) -> uint32 The number of the soft bin
query_SBinName(uint32 index) -> str The description of the soft bin
query_SBinType(uint32 index) -> uint32 The type of the soft bin
query_HBinNumber(uint32 index) -> uint32 The corresponding hard bin number
query_HBinName(uint32 index) -> str The description of the corresponding hard bin
query_HBinType(uint32 index) -> uint32 The type of the corresponding hard bin

[Notify] Pin Data
DataType DATA_TYP_DEVICE_PIN
Occurs: Once for each lot, when all the required data collection is completed.
Contains: Pin information

Member Function Return Value Description

get_PinInfoCount() -> uint32 The count of pin information
query_PinIndex(index: uint32) -> uint32 Pin index
query_ChannelType(index: uint32) -> uint32 Channel type
query_ChannelName(index: uint32) -> str Channel name
query_PhysicalName(index: uint32) -> str Name of physical pin
query_LogicalName(index: uint32) -> str Name of logical pin
query_HeadNumber(index: uint32) -> str Test head number
query_SiteNumber(index: uint32) -> uint32 Test site number

ACS RTDI User Guide
Chapter 2 ACS Nexus
OneAPI Python SDK

112 v2.3.0, July 2025

[Notify] Pattern Data
DataType DATA_TYP_PATTERN
Occurs: Whenever a pattern variable is collected.
Contains: Information on a pattern profile for a specific scan test.

Member Function Return Value Description

get_PatternCount() -> uint32 The count of patterns
query_OpSequence(index: uint32) -> str Operating sequence
query_PatternLabels(index: uint32) -> list List of pattern labels

[User Defined Data]
DataType DATA_TYP_USERDEFINED
Occurs: Whenever the user-defined variable is collected
Contains: Variable and its value information

Member Function Return Value Description

get_UserDefined() -> dict Map of user defined data <variable, value>

[Notify] File Transfer
DataType DATA_TYP_FILE
Occurs: When each file transfer is completed
Contains: The file name

Member Function Return Value Description

get_FileName() -> str The absolute path of the received file

[Notify] Datalog Text
oneapi::DataType DATA_TYP_DATALOGTEXT
Occurs: Whenever a datalog-text variable is collected
Contains: The expression of datalog-text

Member Function Return Value Description

get_TimeStamp() -> uint64 Date and time when the test flow completes (in microseconds)
get_DataLogText() -> str The expression of datalog text

ACS RTDI User Guide
Chapter 2 ACS Nexus

OneAPI Python SDK

v2.3.0, July 2025 113

[Notify] Measurement Data
oneapi::DataType DATA_TYP_MEASUREMENT
Occurs: Once a measurement has ended
Contains: The information of measurement

Member Function Return Value Description

get_MeasurementName() -> str The unique fully qualified name of measurement
get_GroupCount() -> uint32 Total count of parallel groups
query_GroupName(index: uint32) -> str The name of the parallel group
query_GroupBypassed(index: uint32) -> int32 Whether the parallel group was bypassed
query_GroupSites(index: uint32) -> list The number of the site(s) where the parallel group was

bypassed
get_SequenceCount() -> uint32 Total count of the operating sequence
query_SequenceName(index: uint32) -> str The name of the operating sequence
query_SequenceBypassed(index: uint32) ->
int32

Whether the operating sequence was bypassed

query_SequenceSites(index: uint32) -> list The number of site where the operating sequence was
bypassed

query_SequenceGroupResults(index: uint32) ->
list

list of unique "GroupID" for the specific sequence

query_SequenceGroupName(groupID: uint32) ->
str

The name of the parallel group that belongs to current
sequence

query_SequenceGroupBypassed(groupID: uint32)
-> int32

Whether the parallel group was bypassed

query_SequenceGroupSites(groupID: uint32) ->
list

The number of the site where the parallel group was
bypassed

ACS RTDI User Guide
Chapter 2 ACS Nexus
OneAPI Python SDK

114 v2.3.0, July 2025

 Function Introduction

getType() -> DataType

Description Get the type of data currently consumed.

NOTE: This function must be called before all other functions in the consumeData code.

Return One of the following:

• DATA_TYP_PRODUCTION_LOTSTART
• DATA_TYP_PRODUCTION_WAFERSTART
• DATA_TYP_PRODUCTION_TESTSTART
• DATA_TYP_PRODUCTION_TESTEND
• DATA_TYP_PRODUCTION_WAFEREND
• DATA_TYP_PRODUCTION_LOTEND
• DATA_TYP_MEASURED_PARAMETRIC
• DATA_TYP_MEASURED_FUNCTIONAL
• DATA_TYP_MEASURED_MULTI_PARAM
• DATA_TYP_DEVICE
• DATA_TYP_USERDEFINED
• DATA_TYP_FILE
• DATA_TYP_PRODUCTION_TESTFLOWSTART
• DATA_TYP_PRODUCTION_TESTFLOWEND
• DATA_TYP_DATALOGTEXT
• DATA_TYP_IDENTIFICATION
• DATA_TYP_DEVICE_PIN
• DATA_TYP_MEASURED_SCAN
• DATA_TYP_DEVICE_PATTERN

get_TimeStamp() -> uint64

Description Get the date and time in microseconds. Valid for:

• DATA_TYP_PRODUCTION_LOTSTART
• DATA_TYP_PRODUCTION_LOTEND
• DATA_TYP_PRODUCTION_WAFERSTART
• DATA_TYP_PRODUCTION_WAFEREND
• DATA_TYP_PRODUCTION_TESTSTART
• DATA_TYP_PRODUCTION_TESTEND
• DATA_TYP_PRODUCTION_TESTFLOWSTART
• DATA_TYP_PRODUCTION_TESTFLOWEND

Return If by one of the above events, returns a valid value. For example, if event is
DATA_TYP_PRODUCTION_LOTSTART, then the value represents the timestamp of Lot_Start.

Otherwise, returns 0.

ACS RTDI User Guide
Chapter 2 ACS Nexus

OneAPI Python SDK

v2.3.0, July 2025 115

get_TestProgramDir() -> str

Description Get the absolute path of the folder of the active test program.

Valid always, refreshed by DATA_TYP_DEVICE.

Return Valid value.

get_TestProgramName() -> str

Description Get the fully qualified name of the active test program.

Valid always, refreshed by DATA_TYP_DEVICE.

Return Valid value.

get_TestProgramPath() -> str

Description Get the absolute path of the active test program file.

Valid always, refreshed by DATA_TYP_DEVICE.

Return Valid value.

get_PinConfig() -> str

Description Get the fully qualified name of the active DUT board description file.

Valid always, refreshed by DATA_TYP_DEVICE.

Return Valid value.

get_ChannelAttribute() -> str

Description Get the fully qualified name of the active Channel attributes file.

Valid always, refreshed by DATA_TYP_DEVICE.

Return Valid value.

ACS RTDI User Guide
Chapter 2 ACS Nexus
OneAPI Python SDK

116 v2.3.0, July 2025

get_BinInfoCount() -> uint32

Description Get the count of defined soft bin of the active test program.

Valid always, refreshed by DATA_TYP_DEVICE.

Return Valid value.

query_SBinNumber(index: uint32) -> uint32

Description Query the number of the soft bin.

Valid always, refreshed by DATA_TYP_DEVICE.

Parameter Input:

Index number

Return Returns a valid value if valid input index.

Returns 65535 if input index is out of bounds.

query_SBinName(index: uint32) -> str

Description Query the description of the soft bin.

Valid always, refreshed by DATA_TYP_DEVICE.

Parameter Input:

Index number

Return Returns a valid value if valid input index.

Returns "" (empty string) if input index is out of bounds.

query_SBinType(index: uint32) -> uint32

Description Query the type of soft bin.

Valid always, refreshed by DATA_TYP_DEVICE.

Parameter Input:

Index number

Return If valid input index, returns:

0 – PASS
1 – FAIL
2 – UNKONWN

If input index is out of bounds, returns 2.

ACS RTDI User Guide
Chapter 2 ACS Nexus

OneAPI Python SDK

v2.3.0, July 2025 117

query_HBinNumber(index: uint32) -> uint32

Description Query the number of hard bin.

Valid always, refreshed by DATA_TYP_DEVICE.

Parameter Input:

Index number

Return Returns a valid value if valid input index.

Returns 65535 if input index is out of bounds.

query_HBinName(index: uint32) -> str

Description Query the description of the hard bin.

Valid always, refreshed by DATA_TYP_DEVICE.

Parameter Input:

Index number

Return Returns a valid value if valid input index.

Returns "" (empty string) if input index is out of bounds.

query_HBinType(index: uint32) -> uint32

Description Query the type of hard bin.

Valid always, refreshed by DATA_TYP_DEVICE.

Parameter Input:

Index number

Return If valid input index, returns:

0 – PASS
1 – FAIL
2 – UNKONWN

If input index is out of bounds, returns 2.

ACS RTDI User Guide
Chapter 2 ACS Nexus
OneAPI Python SDK

118 v2.3.0, July 2025

get_PinInfoCount() -> uint32

Description Get the total number of pin information.

Valid for DATA_TYP_DEVICE_PIN.

Return Returns a valid value if by above event.

Otherwise, returns 0.

query_ChannelType(index: uint32) -> uint32

Description Query the channel type.

Valid for DATA_TYP_DEVICE_PIN.

Return Returns a valid value if valid input index.

Returns 0 if input index is out of bounds.

query_ChannelName(index: uint32) -> str

Description Query the channel name.

Valid for DATA_TYP_DEVICE_PIN.

Return Returns a valid value if valid input index.

Otherwise, returns "" (empty string).

query_PhysicalName(index: uint32) -> str

Description Query the name of the physical pin.

Valid for DATA_TYP_DEVICE_PIN.

Return Returns a valid value if valid input index.

Otherwise, returns "" (empty string).

query_LogicalName(index: uint32) -> str

Description Query the name of the logical pin.

Valid for DATA_TYP_DEVICE_PIN.

Return Returns a valid value if valid input index.

Otherwise, returns "" (empty string).

ACS RTDI User Guide
Chapter 2 ACS Nexus

OneAPI Python SDK

v2.3.0, July 2025 119

query_HeadNumber(index: uint32) -> uint32

Description Query the test head number.

Valid for DATA_TYP_DEVICE_PIN.

Return Returns a valid value if valid input index.

Returns 0 if input index is out of bounds.

query_SiteNumber(index: uint32) -> uint32

Description Query the test site number.

Valid for DATA_TYP_DEVICE_PIN.

Return Returns a valid value if valid input index.

Returns 0 if input index is out of bounds.

get_PatternCount() -> uint32

Description Get the count of patterns.

Valid always, refreshed by DATA_TYP_DEVICE_PATTERN.

Return Returns a valid value in all cases.

query_OpSequence(uint32 index) -> str

Description Query the operating sequence.

Valid always, refreshed by DATA_TYP_DEVICE_PATTERN & DATA_TYP_MEASURED_SCAN.

Return Returns a valid value if valid input index.

Returns "" (empty string) if input index is out of bounds.

query_PatternLables(uint32 index) -> list

Description Query the list of pattern labels.

Valid for DATA_TYP_DEVICE_PATTERN.

Return Returns a valid value if valid input index.

Returns no element if input index is out of bounds.

ACS RTDI User Guide
Chapter 2 ACS Nexus
OneAPI Python SDK

120 v2.3.0, July 2025

get_UserDefined() -> dict

Description Get the user defined key and value pairs.

Valid for DATA_TYP_USERDEFINED.

Return Returns valid value if by above event, otherwise returns map with no elements.

get_FileName() -> str

Description Get the absolute path of the received file. The file is in the 'home' folder of the current user.

Valid always, refreshed by DATA_TYP_FILE.

Return Returns valid value if by above event, otherwise returns "" (empty string).

get_Timezone() -> int32

Description Get the time zone where ACS Nexus is running (value in integer).

Refreshed by DATA_TYP_PRODUCTION_LOTSTART.

Return Returns a valid value in the case of:
• Production Events
• Measured Value Events

Returns 0 in the case of:
• Device Data
• User Defined Data
• File Transfer

get_SetupTime() -> uint64

Description Get the date and time (in microseconds) when the test program was started.

Refreshed by DATA_TYP_PRODUCTION_LOTSTART.

Return Returns a valid value in the case of:
• Production Events
• Measured Value Events

Returns 0 in the case of:
• Device Data
• User Defined Data
• File Transfer

ACS RTDI User Guide
Chapter 2 ACS Nexus

OneAPI Python SDK

v2.3.0, July 2025 121

get_StationNumber() -> uint32

Description Get the tester station number (value in integer).

Refreshed by DATA_TYP_PRODUCTION_LOTSTART.

Return Returns a valid value in the case of:
• Production Events
• Measured Value Events

Returns 0 in the case of:
• Device Data
• User Defined Data
• File Transfer

get_ModeCode() -> str

Description Get the test mode code.

Refreshed by DATA_TYP_PRODUCTION_LOTSTART.

Return Returns a valid value in the case of:
• Production Events
• Measured Value Events

Returns "" (empty string) in the case of:
• Device Data
• User Defined Data
• File Transfer

get_RetestCode() -> str

Description Get the lot retest code.

Refreshed by DATA_TYP_PRODUCTION_LOTSTART.

Return Returns a valid value in the case of:
• Production Events
• Measured Value Events

Returns "" (empty string) in the case of:
• Device Data
• User Defined Data
• File Transfer

ACS RTDI User Guide
Chapter 2 ACS Nexus
OneAPI Python SDK

122 v2.3.0, July 2025

get_ProtectionCode() -> str

Description Get the data protection code.

Refreshed by DATA_TYP_PRODUCTION_LOTSTART.

Return Returns a valid value in the case of:
• Production Events
• Measured Value Events

Returns "" (empty string) in the case of:
• Device Data
• User Defined Data
• File Transfer

get_BurnTimeMinutes() -> uint32

Description Get the burn-in time (in minutes).

Refreshed by DATA_TYP_PRODUCTION_LOTSTART.

Return Returns a valid value in the case of:
• Production Events
• Measured Value Events

Returns 0 in the case of:
• Device Data
• User Defined Data
• File Transfer

get_CommandCode() -> str

Description Get the command mode code of the tester.

Refreshed by DATA_TYP_PRODUCTION_LOTSTART.

Return Returns a valid value in the case of:
• Production Events
• Measured Value Events

Returns " (empty string) in the case of:
• Device Data
• User Defined Data
• File Transfer

ACS RTDI User Guide
Chapter 2 ACS Nexus

OneAPI Python SDK

v2.3.0, July 2025 123

get_LotId() -> str

Description Get the lot ID.

Refreshed by DATA_TYP_PRODUCTION_LOTSTART.

Return Returns a valid value in the case of:
• Production Events
• Measured Value Events

Returns "" (empty string) in the case of:
• Device Data
• User Defined Data
• File Transfer

get_PartType() -> str

Description Get the part type or product ID.

Refreshed by DATA_TYP_PRODUCTION_LOTSTART.

Return Returns a valid value in the case of:
• Production Events
• Measured Value Events

Returns "" (empty string) in the case of:
• Device Data
• User Defined Data
• File Transfer

get_NodeName() -> str

Description Get the hostname of the tester system controller.

Refreshed by DATA_TYP_PRODUCTION_LOTSTART.

Return Returns a valid value in the case of:
• Production Events
• Measured Value Events

Returns "" (empty string) in the case of:
• Device Data
• User Defined Data
• File Transfer

ACS RTDI User Guide
Chapter 2 ACS Nexus
OneAPI Python SDK

124 v2.3.0, July 2025

get_TesterType() -> str

Description Get the tester type.

Refreshed by DATA_TYP_PRODUCTION_LOTSTART.

Return Returns a valid value in the case of:
• Production Events
• Measured Value Events

Returns "" (empty string) in the case of:
• Device Data
• User Defined Data
• File Transfer

get_JobName() -> str

Description Get the test program name.

Refreshed by DATA_TYP_PRODUCTION_LOTSTART.

Return Returns a valid value in the case of:
• Production Events
• Measured Value Events

Returns "" (empty string) in the case of:
• Device Data
• User Defined Data
• File Transfer

get_JobRevision() -> str

Description Get the test program revision number.

Refreshed by DATA_TYP_PRODUCTION_LOTSTART.

Return Returns a valid value in the case of:
• Production Events
• Measured Value Events

Returns "" (empty string) in the case of:
• Device Data
• User Defined Data
• File Transfer

ACS RTDI User Guide
Chapter 2 ACS Nexus

OneAPI Python SDK

v2.3.0, July 2025 125

get_SublotId() -> str

Description Get the sublot ID.

Refreshed by DATA_TYP_PRODUCTION_LOTSTART.

Return Returns a valid value in the case of:
• Production Events
• Measured Value Events

Returns "" (empty string) in the case of:
• Device Data
• User Defined Data
• File Transfer

get_OperatorName() -> str

Description Get the operator name or ID at setup time.

Refreshed by DATA_TYP_PRODUCTION_LOTSTART.

Return Returns a valid value in the case of:
• Production Events
• Measured Value Events

Returns "" (empty string) in the case of:
• Device Data
• User Defined Data
• File Transfer

get_TesterosType() -> str

Description Get the software type.

Refreshed by DATA_TYP_PRODUCTION_LOTSTART.

Return Returns a valid value in the case of:
• Production Events
• Measured Value Events

Returns "" (empty string) in the case of:
• Device Data
• User Defined Data
• File Transfer

ACS RTDI User Guide
Chapter 2 ACS Nexus
OneAPI Python SDK

126 v2.3.0, July 2025

get_TesterosVersion() -> str

Description Get the tester software version number.

Refreshed by DATA_TYP_PRODUCTION_LOTSTART.

Return Returns a valid value in the case of:
• Production Events
• Measured Value Events

Returns "" (empty string) in the case of:
• Device Data
• User Defined Data
• File Transfer

get_TestType() -> str

Description Get the type of lot.

Refreshed by DATA_TYP_PRODUCTION_LOTSTART.

Return Returns a valid value (PACKAGE_TEST or WAFER_TEST) in the case of:
• Production Events
• Measured Value Events

Returns "" (empty string) in the case of:
• Device Data
• User Defined Data
• File Transfer

get_TestStepCode() -> str

Description Get the test phase or step code.

Refreshed by DATA_TYP_PRODUCTION_LOTSTART.

Return Returns a valid value in the case of:
• Production Events
• Measured Value Events

Returns "" (empty string) in the case of:
• Device Data
• User Defined Data
• File Transfer

ACS RTDI User Guide
Chapter 2 ACS Nexus

OneAPI Python SDK

v2.3.0, July 2025 127

get_TestTemperature() -> str

Description Get the test temperature.

Refreshed by DATA_TYP_PRODUCTION_LOTSTART.

Return Returns a valid value in the case of:
• Production Events
• Measured Value Events

Returns "" (empty string) in the case of:
• Device Data
• User Defined Data
• File Transfer

get_UserText() -> str

Description Get the user defined text.

Refreshed by DATA_TYP_PRODUCTION_LOTSTART.

Return Returns a valid value in the case of:
• Production Events
• Measured Value Events

Returns "" (empty string) in the case of:
• Device Data
• User Defined Data
• File Transfer

get_AuxiliaryFile() -> str

Description Get the name of the auxiliary data file.

Refreshed by DATA_TYP_PRODUCTION_LOTSTART.

Return Returns a valid value in the case of:
• Production Events
• Measured Value Events

Returns "" (empty string) in the case of:
• Device Data
• User Defined Data
• File Transfer

ACS RTDI User Guide
Chapter 2 ACS Nexus
OneAPI Python SDK

128 v2.3.0, July 2025

get_PackageType() -> str

Description Get the package type.

Refreshed by DATA_TYP_PRODUCTION_LOTSTART.

Return Returns a valid value in the case of:
• Production Events
• Measured Value Events

Returns "" (empty string) in the case of:
• Device Data
• User Defined Data
• File Transfer

get_FamilyId() -> str

Description Get the product family ID.

Refreshed by DATA_TYP_PRODUCTION_LOTSTART.

Return Returns a valid value in the case of:
• Production Events
• Measured Value Events

Returns "" (empty string) in the case of:
• Device Data
• User Defined Data
• File Transfer

get_DateCode() -> str

Description Get the date code.

Refreshed by DATA_TYP_PRODUCTION_LOTSTART.

Return Returns a valid value in the case of:
• Production Events
• Measured Value Events

Returns "" (empty string) in the case of:
• Device Data
• User Defined Data
• File Transfer

ACS RTDI User Guide
Chapter 2 ACS Nexus

OneAPI Python SDK

v2.3.0, July 2025 129

get_FacilityId() -> str

Description Get the test facility ID.

Refreshed by DATA_TYP_PRODUCTION_LOTSTART.

Return Returns a valid value in the case of:
• Production Events
• Measured Value Events

Returns "" (empty string) in the case of:
• Device Data
• User Defined Data
• File Transfer

get_FloorId() -> str

Description Get the test floor ID.

Refreshed by DATA_TYP_PRODUCTION_LOTSTART.

Return Returns a valid value in the case of:
• Production Events
• Measured Value Events

Returns "" (empty string) in the case of:
• Device Data
• User Defined Data
• File Transfer

get_ProcessId() -> str

Description Get the fabrication process ID.

Refreshed by DATA_TYP_PRODUCTION_LOTSTART.

Return Returns a valid value in the case of:
• Production Events
• Measured Value Events

Returns "" (empty string) in the case of:
• Device Data
• User Defined Data
• File Transfer

ACS RTDI User Guide
Chapter 2 ACS Nexus
OneAPI Python SDK

130 v2.3.0, July 2025

get_OperationFreq() -> str

Description Get the operation frequency or step.

Refreshed by DATA_TYP_PRODUCTION_LOTSTART.

Return Returns a valid value in the case of:
• Production Events
• Measured Value Events

Returns "" (empty string) in the case of:
• Device Data
• User Defined Data
• File Transfer

get_SpecName() -> str

Description Get the test specification name.

Refreshed by DATA_TYP_PRODUCTION_LOTSTART.

Return Returns a valid value in the case of:
• Production Events
• Measured Value Events

Returns "" (empty string) in the case of:
• Device Data
• User Defined Data
• File Transfer

get_SpecVersion() -> str

Description Get the specification version number.

Refreshed by DATA_TYP_PRODUCTION_LOTSTART.

Return Returns a valid value in the case of:
• Production Events
• Measured Value Events

Returns "" (empty string) in the case of:
• Device Data
• User Defined Data
• File Transfer

ACS RTDI User Guide
Chapter 2 ACS Nexus

OneAPI Python SDK

v2.3.0, July 2025 131

get_FlowId() -> str

Description Get the test flow ID.

Refreshed by DATA_TYP_PRODUCTION_LOTSTART.

Return Returns a valid value in the case of:
• Production Events
• Measured Value Events

Returns "" (empty string) in the case of:
• Device Data
• User Defined Data
• File Transfer

get_SetupId() -> str

Description Get the test setup ID.

Refreshed by DATA_TYP_PRODUCTION_LOTSTART.

Return Returns a valid value in the case of:
• Production Events
• Measured Value Events

Returns "" (empty string) in the case of:
• Device Data
• User Defined Data
• File Transfer

get_DesignRevision() -> str

Description Get the device design revision.

Refreshed by DATA_TYP_PRODUCTION_LOTSTART.

Return Returns a valid value in the case of:
• Production Events
• Measured Value Events

Returns "" (empty string) in the case of:
• Device Data
• User Defined Data
• File Transfer

ACS RTDI User Guide
Chapter 2 ACS Nexus
OneAPI Python SDK

132 v2.3.0, July 2025

get_EngineeringLotId() -> str

Description Get the engineering lot ID.

Refreshed by DATA_TYP_PRODUCTION_LOTSTART.

Return Returns a valid value in the case of:
• Production Events
• Measured Value Events

Returns "" (empty string) in the case of:
• Device Data
• User Defined Data
• File Transfer

get_RomCode() -> str

Description Get the ROM code ID.

Refreshed by DATA_TYP_PRODUCTION_LOTSTART.

Return Returns a valid value in the case of:
• Production Events
• Measured Value Events

Returns "" (empty string) in the case of:
• Device Data
• User Defined Data
• File Transfer

get_SerialNumber() -> str

Description Get the tester serial number.

Refreshed by DATA_TYP_PRODUCTION_LOTSTART.

Return Returns a valid value in the case of:
• Production Events
• Measured Value Events

Returns "" (empty string) in the case of:
• Device Data
• User Defined Data
• File Transfer

ACS RTDI User Guide
Chapter 2 ACS Nexus

OneAPI Python SDK

v2.3.0, July 2025 133

get_SupervisorName() -> str

Description Get the supervisor name or ID.

Refreshed by DATA_TYP_PRODUCTION_LOTSTART.

Return Returns a valid value in the case of:
• Production Events
• Measured Value Events

Returns "" (empty string) in the case of:
• Device Data
• User Defined Data
• File Transfer

get_HeadNumber() -> uint32

Description Get the test head number.

Valid by:

• DATA_TYP_PRODUCTION_LOTSTART
• DATA_TYP_PRODUCTION_WAFERSTART
• DATA_TYP_PRODUCTION_WAFEREND

Return In the case of Lot Start, returned value represents the test head number of the lot.

In the case of Wafer Start or Wafer End, returned value represents test head number of the wafer.

Otherwise, returns 0.

get_SiteGroupNumber() -> uint32

Description Get the site group number.

Valid by:

• DATA_TYP_PRODUCTION_LOTSTART
• DATA_TYP_PRODUCTION_WAFERSTART
• DATA_TYP_PRODUCTION_WAFEREND

Return In the case of Lot Start, returned value represents the site group number of the lot.

In the case of Wafer Start or Wafer End, returned value represents site group number of the
wafer.

Otherwise, returns 0.

ACS RTDI User Guide
Chapter 2 ACS Nexus
OneAPI Python SDK

134 v2.3.0, July 2025

get_SiteCount() -> uint32

Description Get the number of active sites described in this record.

Refreshed by DATA_TYP_PRODUCTION_LOTSTART.

Return Returns a valid value in the case of:
• Production Events
• Measured Value Events

Returns 0 in the case of:
• Device Data
• User Defined Data
• File Transfer

get_TotalHeadSiteList() -> list

Description Get all test site numbers.

Refreshed by DATA_TYP_PRODUCTION_LOTSTART.

Return Returns a valid value in the case of:
• Production Events
• Measured Value Events

Returns no element in the case of:
• Device Data
• User Defined Data
• File Transfer

get_ProberHandlerType() -> str

Description Get handler or prober type.

Refreshed by DATA_TYP_PRODUCTION_LOTSTART.

Return Returns a valid value in the case of:
• Production Events
• Measured Value Events

Returns "" (empty string) in the case of:
• Device Data
• User Defined Data
• File Transfer

ACS RTDI User Guide
Chapter 2 ACS Nexus

OneAPI Python SDK

v2.3.0, July 2025 135

get_ProberHandlerId() -> str

Description Get the handler or prober ID.

Refreshed by DATA_TYP_PRODUCTION_LOTSTART.

Return Returns a valid value in the case of:
• Production Events
• Measured Value Events

Returns "" (empty string) in the case of:
• Device Data
• User Defined Data
• File Transfer

get_ProbecardType() -> str

Description Get the probe card type.

Refreshed by DATA_TYP_PRODUCTION_LOTSTART.

Return Returns a valid value in the case of:
• Production Events
• Measured Value Events

Returns "" (empty string) in the case of:
• Device Data
• User Defined Data
• File Transfer

get_ProbecardId() -> str

Description Get the probe card ID.

Refreshed by DATA_TYP_PRODUCTION_LOTSTART.

Return Returns a valid value in the case of:
• Production Events
• Measured Value Events

Returns "" (empty string) in the case of:
• Device Data
• User Defined Data
• File Transfer

ACS RTDI User Guide
Chapter 2 ACS Nexus
OneAPI Python SDK

136 v2.3.0, July 2025

get_LoadboardType() -> str

Description Get the DUT board type.

Refreshed by DATA_TYP_PRODUCTION_LOTSTART.

Return Returns a valid value in the case of:
• Production Events
• Measured Value Events

Returns "" (empty string) in the case of:
• Device Data
• User Defined Data
• File Transfer

get_LoadboardId() -> str

Description Get the DUT board ID.

Refreshed by DATA_TYP_PRODUCTION_LOTSTART.

Return Returns a valid value in the case of:
• Production Events
• Measured Value Events

Returns "" (empty string) in the case of:
• Device Data
• User Defined Data
• File Transfer

get_DibType() -> str

Description Get the DIB board type.

Refreshed by DATA_TYP_PRODUCTION_LOTSTART.

Return Returns a valid value in the case of:
• Production Events
• Measured Value Events

Returns "" (empty string) in the case of:
• Device Data
• User Defined Data
• File Transfer

ACS RTDI User Guide
Chapter 2 ACS Nexus

OneAPI Python SDK

v2.3.0, July 2025 137

get_DibId() -> str

Description Get the DIB board ID.

Refreshed by DATA_TYP_PRODUCTION_LOTSTART.

Return Returns a valid value in the case of:
• Production Events
• Measured Value Events

Returns "" (empty string) in the case of:
• Device Data
• User Defined Data
• File Transfer

get_CableType() -> str

Description Get the interface cable type.

Refreshed by DATA_TYP_PRODUCTION_LOTSTART.

Return Returns a valid value in the case of:
• Production Events
• Measured Value Events

Returns "" (empty string) in the case of:
• Device Data
• User Defined Data
• File Transfer

get_CableId() -> str

Description Get the interface cable ID.

Refreshed by DATA_TYP_PRODUCTION_LOTSTART.

Return Returns a valid value in the case of:
• Production Events
• Measured Value Events

Returns "" (empty string) in the case of:
• Device Data
• User Defined Data
• File Transfer

ACS RTDI User Guide
Chapter 2 ACS Nexus
OneAPI Python SDK

138 v2.3.0, July 2025

get_ContactorType() -> str

Description Get the hander contactor type.

Refreshed by DATA_TYP_PRODUCTION_LOTSTART.

Return Returns a valid value in the case of:
• Production Events
• Measured Value Events

Returns "" (empty string) in the case of:
• Device Data
• User Defined Data
• File Transfer

get_ContactorId() -> str

Description Get the hander contactor ID.

Refreshed by DATA_TYP_PRODUCTION_LOTSTART.

Return Returns a valid value in the case of:
• Production Events
• Measured Value Events

Returns "" (empty string) in the case of:
• Device Data
• User Defined Data
• File Transfer

get_LaserType() -> str

Description Get the laser type.

Refreshed by DATA_TYP_PRODUCTION_LOTSTART.

Return Returns a valid value in the case of:
• Production Events
• Measured Value Events

Returns "" (empty string) in the case of:
• Device Data
• User Defined Data
• File Transfer

ACS RTDI User Guide
Chapter 2 ACS Nexus

OneAPI Python SDK

v2.3.0, July 2025 139

get_LaserId() -> str

Description Get the laser ID.

Refreshed by DATA_TYP_PRODUCTION_LOTSTART.

Return Returns a valid value in the case of:
• Production Events
• Measured Value Events

Returns "" (empty string) in the case of:
• Device Data
• User Defined Data
• File Transfer

get_ExtraEquipType() -> str

Description Get extra equipment type.

Refreshed by DATA_TYP_PRODUCTION_LOTSTART.

Return Returns a valid value in the case of:
• Production Events
• Measured Value Events

Returns "" (empty string) in the case of:
• Device Data
• User Defined Data
• File Transfer

get_ExtraEquipId() -> str

Description Get extra equipment ID.

Refreshed by DATA_TYP_PRODUCTION_LOTSTART.

Return Returns a valid value in the case of:
• Production Events
• Measured Value Events

Returns "" (empty string) in the case of:
• Device Data
• User Defined Data
• File Transfer

ACS RTDI User Guide
Chapter 2 ACS Nexus
OneAPI Python SDK

140 v2.3.0, July 2025

get_DisPositionCode() -> str

Description Get lot disposition code.

Refreshed by DATA_TYP_PRODUCTION_LOTSTART.

Return Returns a valid value in the case of the above event.

Otherwise, returns "" (empty string)

get_UserDescription() -> str

Description Get the description supplied by the user.

Valid by:

• DATA_TYP_PRODUCTION_LOTEND
• DATA_TYP_PRODUCTION_WAFEREND

Return In the case of Lot End, value represents the lot description supplied by the user.

In the case of Wafer End, value represents the wafer description supplied by the user.

Otherwise, returns "" (empty string).

get_ExecDescription() -> str

Description Get the description supplied by the executive.

Valid by:

• DATA_TYP_PRODUCTION_LOTEND
• DATA_TYP_PRODUCTION_WAFEREND

Return In the case of Lot End, value represents the lot description supplied by the user.

In the case of Wafer End, value represents the wafer description supplied by the user.

Otherwise, returns "" (empty string).

ACS RTDI User Guide
Chapter 2 ACS Nexus

OneAPI Python SDK

v2.3.0, July 2025 141

get_WaferSize() -> float

Description Get the diameter of the wafer in WF_UNITS.

Refreshed by:

• DATA_TYP_PRODUCTION_WAFERSTART

Return Returns a valid value in the case of:
• Production Events (except for Lot Start)
• Measured Value Events

Returns 0.0 in the case of:
• Lot Start
• Device Data
• User Defined Data
• File Transfer

get_DieHeight() -> float

Description Get the height of the die in WF_UNITS.

Refreshed by:

• DATA_TYP_PRODUCTION_WAFERSTART

Return Returns a valid value in the case of:
• Production Events (except for Lot Start)
• Measured Value Events

Returns 0.0 in the case of:
• Lot Start
• Device Data
• User Defined Data
• File Transfer

get_DieWidth() -> float

Description Get the width of the die in WF_UNITS.

Refreshed by:

• DATA_TYP_PRODUCTION_WAFERSTART

Return Returns a valid value in the case of:
• Production Events (except for Lot Start)
• Measured Value Events

Returns 0.0 in the case of:
• Lot Start
• Device Data
• User Defined Data
• File Transfer

ACS RTDI User Guide
Chapter 2 ACS Nexus
OneAPI Python SDK

142 v2.3.0, July 2025

get_WaferUnits() -> uint32

Description Get the unit for wafer and die dimensions.

Refreshed by:

• DATA_TYP_PRODUCTION_WAFERSTART

Return Returns a valid value in the case of:
• Production Events (except for Lot Start)
• Measured Value Events

Returns 0 in the case of:
• Lot Start
• Device Data
• User Defined Data
• File Transfer

get_WaferFlat() -> str

Description Get the orientation of the wafer flat.

Refreshed by:

• DATA_TYP_PRODUCTION_WAFERSTART

Return Returns a valid value in the case of:
• Production Events (except for Lot Start)
• Measured Value Events

Returns "" (empty string) in the case of:
• Lot Start
• Device Data
• User Defined Data
• File Transfer

get_CenterY() -> int32

Description Get the Y-coordinate of the center die on the wafer.

Refreshed by:

• DATA_TYP_PRODUCTION_WAFERSTART

Return Returns a valid value in the case of:
• Production Events (except for Lot Start)
• Measured Value Events

Returns -32787 in the case of:
• Lot Start
• Device Data
• User Defined Data
• File Transfer

ACS RTDI User Guide
Chapter 2 ACS Nexus

OneAPI Python SDK

v2.3.0, July 2025 143

get_CenterX() -> int32

Description Get the X-coordinate of the center die on the wafer.

Refreshed by:

• DATA_TYP_PRODUCTION_WAFERSTART

Return Returns a valid value in the case of:
• Production Events (except for Lot Start)
• Measured Value Events

Returns -32787 in the case of:
• Lot Start
• Device Data
• User Defined Data
• File Transfer

get_PositiveX() -> str

Description Get the positive X-direction of the wafer.

Refreshed by:

• DATA_TYP_PRODUCTION_WAFERSTART

Return Returns a valid value in the case of:
• Production Events (except for Lot Start)
• Measured Value Events

Returns "" (empty string) in the case of:
• Lot Start
• Device Data
• User Defined Data
• File Transfer

get_PositiveY() -> str

Description Get the positive Y-direction of the wafer.

Refreshed by:

• DATA_TYP_PRODUCTION_WAFERSTART

Return Returns a valid value in the case of:
• Production Events (except for Lot Start)
• Measured Value Events

Returns "" (empty string) in the case of:
• Lot Start
• Device Data
• User Defined Data
• File Transfer

ACS RTDI User Guide
Chapter 2 ACS Nexus
OneAPI Python SDK

144 v2.3.0, July 2025

get_WaferId() -> str

Description Get the wafer ID.

Refreshed by:

• DATA_TYP_PRODUCTION_WAFERSTART

Return Returns a valid value in the case of:
• Production Events (except for Lot Start)
• Measured Value Events

Returns "" (empty string) in the case of:
• Lot Start
• Device Data
• User Defined Data
• File Transfer

get_TestedCount() -> uint32

Description Get the number of the tested parts.

Refreshed by:

• DATA_TYP_PRODUCTION_WAFEREND

Return Returns a valid value in the case above, otherwise returns 0.

get_RetestedCount() -> uint32

Description Get the number of the retested parts.

Refreshed by:

• DATA_TYP_PRODUCTION_WAFEREND

Return Returns a valid value in the case above, otherwise returns 0.

get_GoodCount() -> uint32

Description Get the number of the tested parts that have passed.

Refreshed by:

• DATA_TYP_PRODUCTION_WAFEREND

Return Returns a valid value in the case above, otherwise returns 0.

ACS RTDI User Guide
Chapter 2 ACS Nexus

OneAPI Python SDK

v2.3.0, July 2025 145

get_HeadSiteList() -> list

Description Get array of test site number with head information.

Valid for DATA_TYP_PRODUCTION_TESTSTART

NOTE:
“headsite” is a new concept proposed by OneAPI. It integrates head and site information into an
integer. The following methods can convert headsite to head or site:

• uint32 toHead(uint32 index);
• uint32 toSite(uint32 index);

Return Returns a valid value in the case above, otherwise returns no element.

get_ResultCount() -> uint32

Description Get the count of the test result.

Valid for:

• DATA_TYP_PRODUCTION_TESTEND
• DATA_TYP_MEASURED_PARAMETRIC
• DATA_TYP_MEASURED_FUNCTIONAL
• DATA_TYP_MEASURED_MULTI_PARAM

Return In the case of the above events, returns a valid value.
For example, if event is DATA_TYP_PRODUCTION_TESTEND, then the value represents the
count of DUTs of the current touchdown. If event is
DATA_TYP_MEASURED_FUNCTIONAL, then the value represents the count of functional
test result for the current test item.

Otherwise, returns 0

query_HeadSite(index: uint32) -> uint32;

Description Query the test site number with head information.

Valid by:

• DATA_TYP_PRODUCTION_TESTEND
• DATA_TYP_MEASURED_PARAMETRIC
• DATA_TYP_MEASURED_FUNCTIONAL
• DATA_TYP_MEASURED_MULTI_PARAM
• DATA_TYP_PRODUCTION_TESTSTART

Return Returns a valid value if valid input index.

Returns 0 if input index is out of bounds.

ACS RTDI User Guide
Chapter 2 ACS Nexus
OneAPI Python SDK

146 v2.3.0, July 2025

query_PartFlag(index: uint32) -> str

Description Query the part information flags.

Valid by:

• DATA_TYP_PRODUCTION_TESTEND

Return Returns a valid value if valid input index.

Returns "" (empty string) if input index is out of bounds.

query_SBinResult(index: uint32) -> uint32

Description Query the soft bin number.

Valid by:

• DATA_TYP_PRODUCTION_TESTEND

Return Returns a valid value if valid input index.

Returns 0 if input index is out of bounds.

query_HBinResult(index: uint32) -> uint32

Description Query the hard bin number.

Valid by:

• DATA_TYP_PRODUCTION_TESTEND

Return Returns a valid value if valid input index.

Returns 0 if input index is out of bounds.

query_XCoord(index: uint32) -> int32

Description Query the X-coordinate.

Valid by:

• DATA_TYP_PRODUCTION_TESTEND
• DATA_TYP_PRODUCTION_TESTSTART

Return Returns a valid value if valid input index.

Returns 65535 if input index is out of bounds.

ACS RTDI User Guide
Chapter 2 ACS Nexus

OneAPI Python SDK

v2.3.0, July 2025 147

query_YCoord(index: uint32) -> int32

Description Query the Y-coordinate.

Valid by:

• DATA_TYP_PRODUCTION_TESTEND
• DATA_TYP_PRODUCTION_TESTSTART

Return Returns a valid value if valid input index.

Returns 65535 if input index is out of bounds.

query_TestTime(index: uint32) -> uint32

Description Query the elapsed test time in microseconds.

Valid by:

• DATA_TYP_PRODUCTION_TESTEND

Return Returns a valid value if valid input index.

Returns 0 if input index is out of bounds.

query_PartId(index: uint32) -> str

Description Query the part identification.

Valid by:

• DATA_TYP_PRODUCTION_TESTEND

Return Returns a valid value if valid input index.

Returns "" (empty string) if input index is out of bounds.

query_PartText (index: uint32) -> str

Description Query the part description text.

Valid by:

• DATA_TYP_PRODUCTION_TESTEND

Return Returns a valid value if valid input index.

Returns "" (empty string) if input index is out of bounds.

ACS RTDI User Guide
Chapter 2 ACS Nexus
OneAPI Python SDK

148 v2.3.0, July 2025

query_TestNumber(index: uint32) -> uint32

Description Get the number of current test item.

Valid by:

• DATA_TYP_MEASURED_PARAMETRIC
• DATA_TYP_MEASURED_FUNCTIONAL
• DATA_TYP_MEASURED_MULTI_PARAM
• DATA_TYP_MEASURED_SCAN

Return Returns a valid value if valid input index.
For example, if event is DATA_TYP_MEASURED_PARAMETRIC, then the value represents
the number of the current parametric test.

Returns "" (empty string) if input index is out of bounds.

query_TestText(index: uint32) -> str

Description Query test description text or label.

Valid by:

• DATA_TYP_MEASURED_PARAMETRIC
• DATA_TYP_MEASURED_FUNCTIONAL
• DATA_TYP_MEASURED_MULTI_PARAM
• DATA_TYP_MEASURED_SCAN

Return Returns a valid value if valid input index.
For example, if event is DATA_TYP_MEASURED_PARAMETRIC, then the value represents
the test text of the current parametric test.

Returns "" (empty string) if input index is out of bounds.

query_LowLimit(index: uint32) -> float

Description Query the low test limit value.

Valid by:

• DATA_TYP_MEASURED_PARAMETRIC
• DATA_TYP_MEASURED_MULTI_PARAM

Return Returns a valid value if valid input index.
For example, if event is DATA_TYP_MEASURED_PARAMETRIC, then the value represents
the low limit of the current parametric test.

Returns 0.0 if input index is out of bounds.

ACS RTDI User Guide
Chapter 2 ACS Nexus

OneAPI Python SDK

v2.3.0, July 2025 149

query_HighLimit(index: uint32) -> float

Description Query the high test limit value.

Valid by:

• DATA_TYP_MEASURED_PARAMETRIC
• DATA_TYP_MEASURED_MULTI_PARAM

Return Returns a valid value if valid input index.
For example, if event is DATA_TYP_MEASURED_PARAMETRIC, then the value represents
the high limit of the current parametric test.

Returns 0.0 if input index is out of bounds.

query_Unit(index: uint32) -> str

Description Query the test units.

Valid by:

• DATA_TYP_MEASURED_PARAMETRIC
• DATA_TYP_MEASURED_MULTI_PARAM

Return Returns a valid value if valid input index.
For example, if event is DATA_TYP_MEASURED_PARAMETRIC, then the value represents
the test unit of the current parametric test.

Returns "" (empty string) if input index is out of bounds.

query_TestFlag(index: uint32) -> str

Description Query the test flags, including fail, alarm, etc.

Valid by:

• DATA_TYP_MEASURED_PARAMETRIC
• DATA_TYP_MEASURED_FUNCTIONAL
• DATA_TYP_MEASURED_MULTI_PARAM
• DATA_TYP_MEASURED_SCAN

Return Returns a valid value if valid input index.
For example, if event is DATA_TYP_MEASURED_PARAMETRIC, then the value represents
the test flags of the current parametric test.

Returns "" (empty string) if input index is out of bounds.

ACS RTDI User Guide
Chapter 2 ACS Nexus
OneAPI Python SDK

150 v2.3.0, July 2025

NexusData::query_TestSuite(index: uint32) -> str

Description Query the test suite name.

Valid by:

• DATA_TYP_MEASURED_PARAMETRIC
• DATA_TYP_MEASURED_FUNCTIONAL
• DATA_TYP_MEASURED_MULTI_PARAM
• DATA_TYP_MEASURED_SCAN

Return Returns a valid value if valid input index.
For example, if event is DATA_TYP_MEASURED_PARAMETRIC, then the value represents
the test suite name of the current parametric test.

Returns "" (empty string) if input index is out of bounds.

NexusData::query_MeasurementName(index: uint32) -> str

Description Query the measurement name.

Valid by:

• DATA_TYP_MEASURED_PARAMETRIC
• DATA_TYP_MEASURED_FUNCTIONAL
• DATA_TYP_MEASURED_MULTI_PARAM
• DATA_TYP_MEASURED_SCAN

Return Returns a valid value if valid input index.
For example, if event is DATA_TYP_MEASURED_PARAMETRIC, then the value represents
the measurement name of the current parametric test.

Returns "" (empty string) if input index is out of bounds.

query_Result(index: uint32) -> float

Description Query the test result.

Valid by:

• DATA_TYP_MEASURED_PARAMETRIC

Return Returns a valid value if valid input index.

Returns 0.0 if input index is out of bounds.

ACS RTDI User Guide
Chapter 2 ACS Nexus

OneAPI Python SDK

v2.3.0, July 2025 151

query_CycleCount(index: uint32) -> uint32

Description Query the vector cycle count.

Valid by:

• DATA_TYP_MEASURED_FUNCTIONAL

Return Returns a valid value if valid input index.

Returns 0 if input index is out of bounds.

query_NumberFail(index: uint32) -> uint32

Description Query the vector cycle count.

Valid by:

• DATA_TYP_MEASURED_FUNCTIONAL

Return Returns a valid value if valid input index.

Returns 0 if input index is out of bounds.

query_FailPins(index: uint32) -> list

Description Query the list of failing pin bit field.

Valid by:

• DATA_TYP_MEASURED_FUNCTIONAL

Return Returns a valid value if valid input index.

Returns no element if input index is out of bounds.

query_VectNam(index: uint32) -> str

Description Query the vector module pattern name.

Valid by:

• DATA_TYP_MEASURED_FUNCTIONAL

Return Returns a valid value if valid input index.

Returns "" (empty string) if input index is out of bounds.

ACS RTDI User Guide
Chapter 2 ACS Nexus
OneAPI Python SDK

152 v2.3.0, July 2025

query_Results(index: uint32) -> list

Description Query the list of all test results.

Valid by:

• DATA_TYP_MEASURED_FUNCTIONAL

Return Returns a valid value if valid input index.

Returns no element if input index is out of bounds.

get_TestFlowName() -> str

Description Get the test flow name.

Valid by:

• DATA_TYP_PRODUCTION_TESTFLOWSTART

• DATA_TYP_PRODUCTION_TESTFLOWEND

Return Returns a valid value if valid input index.

Returns "" (empty string) if input index is out of bounds.

get_DataLogText() -> str

Description Get the data log text.

Valid by:

• DATA_TYP_DATALOGTEXT

Return Returns a valid value in the case of the above event.

Otherwise, returns "" (empty string).

query_TotalCycleCount(index: uint32) -> int32

Description Query the total number of cycles.

Valid by:

• DATA_TYP_MEASURED_SCAN

Return Returns a valid value if valid input index.

Returns 0 if input index is out of bounds.

ACS RTDI User Guide
Chapter 2 ACS Nexus

OneAPI Python SDK

v2.3.0, July 2025 153

query_FailCycleCount(index: uint32) -> int32

Description Query the total number of failing cycles.

Valid by:

• DATA_TYP_MEASURED_SCAN

Return Returns a valid value if valid input index.

Returns 0 if input index is out of bounds.

query_PatternResults(index: uint32) -> list

Description Query the list of pattern index results.

Valid by:

• DATA_TYP_MEASURED_SCAN

Return Returns a valid value if valid input index.

Returns no element if input index is out of bounds.

query_PatternName(index: uint32) -> str

Description Query the pattern name.

Valid by:

• DATA_TYP_MEASURED_SCAN

Return Returns a valid value if valid input index.

Otherwise, returns "NOT EXIST".

query_PinResults(index: uint64) -> list

Description Query the list of pin index results.

Valid by:

• DATA_TYP_MEASURED_FUNCTIONAL
• DATA_TYP_MEASURED_MULTI_PARAM
• DATA_TYP_MEASURED_SCAN

Return Returns a valid value if valid input index.

Returns no element if input index is out of bounds.

ACS RTDI User Guide
Chapter 2 ACS Nexus
OneAPI Python SDK

154 v2.3.0, July 2025

query_PinName(pinID: uint64) -> str

Description Query the pin name.

Valid by:

• DATA_TYP_MEASURED_FUNCTIONAL
• DATA_TYP_MEASURED_MULTI_PARAM
• DATA_TYP_MEASURED_SCAN

Return Returns a valid value if valid input index.

Otherwise, returns "NOT EXIST".

query_FailCycles(pinID: uint64) -> list

Description Query the list of fail cycle numbers.

Valid by:

• DATA_TYP_MEASURED_FUNCTIONAL
• DATA_TYP_MEASURED_SCAN

Return Returns a valid value if valid input index.

Returns no element if input index is out of bounds.

get_PatternCount() -> uint32

Description Get the total number of patterns.

Valid by:

• DATA_TYP_MEASURED_SCAN

Return Returns a valid value if by above event.

Otherwise, returns 0.

query_PatternLabels(index: uint32) -> list

Description Query the list of pattern names.

Valid by:

• DATA_TYP_MEASURED_SCAN

Return Returns a valid value if valid input index.

Returns no element if input index is out of bounds.

ACS RTDI User Guide
Chapter 2 ACS Nexus

OneAPI Python SDK

v2.3.0, July 2025 155

get_MeasurementName() -> str

Description Get the measurement name.

Valid by:

• DATA_TYP_MEASUREMENT

Return Returns a valid value if by above event.

Otherwise, returns "" (empty string).

get_GroupCount() -> uint32

Description Get the total count of parallel groups.

Valid by:

• DATA_TYP_MEASUREMENT

Return Returns a valid value if by above event.

Otherwise, returns 0.

query_GroupName(index: uint32) -> str

Description Query the name of the parallel group.

Valid by:

• DATA_TYP_MEASUREMENT

Return Returns a valid value if valid input index.

Otherwise, returns "" (empty string).

query_GroupBypassed(index: uint32) -> int32;

Description Query whether the parallel group was bypassed.

Valid by:

• DATA_TYP_MEASUREMENT

Return If valid input index, returns one of the following:

• 0: bypassed is set to ‘false’
• 1: bypassed is set to ‘true’
• -1: bypassed is not set

Returns -1 if input index is out of bounds.

ACS RTDI User Guide
Chapter 2 ACS Nexus
OneAPI Python SDK

156 v2.3.0, July 2025

query_GroupSites(index: uint32) -> list

Description Query the number of the site where the parallel group was bypassed.

Valid by:

• DATA_TYP_MEASUREMENT

Return Returns a valid value if valid input index.

Returns no element (meaning that all sites were bypassed) if input index is out of bounds.

get_SequenceCount() -> uint32

Description Get the total count of operating sequence call.

Valid by:

• DATA_TYP_MEASUREMENT

Return Returns a valid value if by above event.

Otherwise, returns 0.

query_SequenceName(index: uint32) -> str

Description Query the name of the operating sequence call.

Valid by:

• DATA_TYP_MEASUREMENT

Return Returns a valid value if valid input index.

Otherwise, returns "" (empty string).

query_SequenceBypassed(index: uint32) -> int32;

Description Query whether the operating sequence call was bypassed.

Valid by:

• DATA_TYP_MEASUREMENT

Return If valid input index, returns one of the following:

• 0: bypassed is set to ‘false’
• 1: bypassed is set to ‘true’
• -1: bypassed is not set

Returns -1 if input index is out of bounds.

ACS RTDI User Guide
Chapter 2 ACS Nexus

OneAPI Python SDK

v2.3.0, July 2025 157

query_SeqeunceSites(index: uint32) -> list

Description Query the number of the site where the operating sequence call was bypassed.

Valid by:

• DATA_TYP_MEASUREMENT

Return Returns a valid value if valid input index.

Returns no element (meaning that all sites were bypassed) if input index is out of bounds.

query_SeqeunceGroupResults(index: uint32) -> list

Description Query the list of unique "GroupID" for the specific sequence.

Valid by:

• DATA_TYP_MEASUREMENT

Return Returns a valid value if valid input index.

Returns no element if input index is out of bounds.

query_SequenceGroupName(GroupID: uint32) -> str

Description Query the name of the parallel group for the current sequence.

Valid by:

• DATA_TYP_MEASUREMENT

Return Returns a valid value if valid input index.

Otherwise, returns "" (empty string).

query_SequenceGroupBypassed(groupID: uint32) -> int32;

Description Query whether the parallel group was bypassed for the current sequence.

Valid by:

• DATA_TYP_MEASUREMENT

Return If valid input index, returns one of the following:

• 0: bypassed is set to ‘false’
• 1: bypassed is set to ‘true’
• -1: bypassed is not set

Returns -1 if input index is out of bounds.

ACS RTDI User Guide
Chapter 2 ACS Nexus
OneAPI Python SDK

158 v2.3.0, July 2025

query_SeqeunceGroupSites(groupID: uint32) -> list

Description Query the number of the site where the parallel group was bypassed for the current sequence.

Valid by:

• DATA_TYP_MEASUREMENT

Return Returns a valid value if valid input index.

Returns no element (meaning that all sites for the current sequence were bypassed) if input index
is out of bounds.

ACS RTDI User Guide
Chapter 2 ACS Nexus

OneAPI Python SDK

v2.3.0, July 2025 159

 class Command
This class is used to schedule the control capability of ACS Nexus through the Interface.sendCommand. Each time the
interface is called, an object of Command needs to be created and passed into the interface as an argument, as shown in
the example below

cmd = Command()
cmd.name = “PAUSE”
cmd.reason = “Yield is lower than 80 percent.”
tc = TestCell()
int res = Interface.sendCommand(tc, cmd)
if res != 0:
 print(f"Send command fail. code = {res}")

Member

name = ""

Description The command name should be one of the following (case sensitive):

• PAUSE
• STOP
• SetNewBin (see SetNewBin Example for details on how to use SetNewBin)
• SetNewBinConfig

param = ""

Description The necessary parameters for this command.

This variable is string type, so all information must be assembled into a string. For example:

oneapi::Command cmd;
cmd.name = “SetNewBinConfig”;
cmd.param = “Timeout 2 TimeoutAction Abort IllBinAction AltBin
IllAltBin 9”;

PAUSE
• None

STOP
• None

SetNewBin
• Mapping of Site and Bin

SetNewBinConfig
• Enabled
o 0
o 1

ACS RTDI User Guide
Chapter 2 ACS Nexus
OneAPI Python SDK

160 v2.3.0, July 2025

• Timeout (in seconds)

• TimeoutAction
o Abort
o OriginalBin
o TimeoutBin

• BinningHistoryDir (in string)

• TimeoutBin (in integer)

• IllAltBin (in integer) : illegal alt bin

• IllBinAction : illegal bin action
o Abort
o AltBin

• MinValidAltBin (in integer)

• MaxValidAltBin (in integer)

See Table 2-11 for additional descriptive information for SetNewBinConfig.

NOTE: Below are additional considerations for using SetNewBinConfig and SetNewBin.

• Bin ID "-1" is special for the Equipment Driver which is loaded with this BinControl
function. If this number is set as AltBin or IllAltBin, the process in the driver changes
to "Abort."

• If Bin ID "-1" is dedicated into either or both MinValidAltBin /
MaxValidAltBin, the illegal bins checking process is skipped. The specified Bin ID
with SetNewBin command evaluates in the driver process.

• Logical inconsistencies about configuration by SetNewBinConfig command are not
evaluated.

reason = ""

Description The reason for sending this command to ACS Nexus. The reason will be displayed in the ACS
Nexus GUI.

ACS RTDI User Guide
Chapter 2 ACS Nexus

OneAPI Python SDK

v2.3.0, July 2025 161

SetNewBin Example
At the start of the python container application, the below imports are needed from liboneAPI:

 import Monitor
 import DataType
 import TestCell
 import Command
 import Interface
 import toHead
 import toSite

1. Setting the SetNewBin config in the container app:

 tc = TestCell()
 cmd = Command()
 cmd.name = "SetNewBinConfig"
 cmd.param = "Enabled 1 Timeout 1 TimeoutAction OriginalBin"
 cmd.reason = f"test {cmd.name} command"
 res = Interface.sendCommand(tc, cmd)
 if res != 0:
 print(f"Send SetNewBinConfig command fail. code = {res}")
 else:
 print(f"Send SetNewBinControl Config command: {cmd.param}")

2. Dummy SetNewBin set when not updating the bin. This is used to bypass the timeout time.

 tc = TestCell()
 cmd = Command()
 cmd.name = "SetNewBin"
 cmd.param = "" # send bin=null for no bin change
 cmd.reason = ""
 res = Interface.sendCommand(tc, cmd)
 if res != 0:
 print(f"Send SetNewBin command fail. code = {res}")
 else:
 print("Send SetNewBin command dummy")

ACS RTDI User Guide
Chapter 2 ACS Nexus
OneAPI Python SDK

162 v2.3.0, July 2025

3. Set a new bin using SetNewBin:

 tc = TestCell()
 cmd = Command()
 cmd.name = "SetNewBin"
 cmd.param = "1:14" # syntax is siteNum:NewBinNum
 cmd.reason = f"test {cmd.name} command"
 res = Interface.sendCommand(tc, cmd)
 if res != 0:
 print(f"Send SetNewBin command fail. code = {res}")
 else:
 print("Sending: TN=621: SetNewBin command sent: 1:14")

Description for SetNewBin()

• Forces to change the BIN value which is to be applied to the next BIN_DEVICE operation.
• Returns as soon as the command is accepted by Nexus (does not wait for new bin to actually be applied).
• Lot test execution is blocked until new bin information is set to Nexus by this command.

Command parameters for SetNewBin()

• params[“CMD_NAME”] : “SetNewBin”
• params[“CMD_PARAM”] : <SITE> “:” <BIN> [<SITE> “:” <BIN>]…

Description for SetNewBinConfig()

• Changes the corresponding configuration parameters.
• Is effective before the first BIN_DEVICE, after LotStart (for FT), or WaferStart (for WS).
• Resets to values in the configuration file at LotStart.

Command parameters for SetNewBinConfig()

• params[“CMD_NAME”] : “SetNewBinConfig”

• params[“CMD_PARAM”] : <ConfigParameter>
<ConfigParameters>:
“Enabled“ <“0” | “1”>
“Timeout” <TimeoutValueInSec>
“TimeoutAction” < “Abort” | “OriginalBin” | “TimeoutBin” >
“TimeoutBin” <BinCodeInDecimal>

ACS RTDI User Guide
Chapter 2 ACS Nexus

OneAPI Python SDK

v2.3.0, July 2025 163

Table 2-11. SetNewBinConfig Descriptions

Item Description

Enabled Defines whether the Bin Control feature is enabled or not enabled.

Timeout Defines timeout value in seconds.

TimeoutAction Defines the action caused by timeout.

TimeoutBin Defines the special Bin which is sent when timeout is detected.

BinningHistoryDir Defines the directory path for binning history file.

IllBinAction Defines the action caused by illegal bins specified.

IllAltBin Defines the special Bin where the specified illegal bins are sent.

MinValidAltBin Defines the lower bin code of the enabled range.

MaxValidAltBin Defines the higher bin code of the enabled range.

 class AppInfo
This class describes the application information which is filled in by the developer and passed in as an argument when
calling Interface.connect. It will be used as the identification of this OneAPI client in the interaction with ACS Nexus.
For example, when ACS Nexus receives a control command, it will know who sent the command.

Member

name = ""

Description The name of this application.

vendor = ""

Description The vendor of this application.

version = ""

Description The version of this application.

ACS RTDI User Guide
Chapter 2 ACS Nexus
OneAPI Python SDK

164 v2.3.0, July 2025

 class QueryResponse
This class describes the return information when calling the DFF data reading interfaces.

Member

code -> int

Description Error code for calling the interface.

• 0: invoke success
• 1: common error
• 2: connection error

result -> str

Description Result for calling the interface.

• jobID
• status: COMPLETE, RUNNING, FAILED
• DFF data string

errmsg -> str

Description Detail error infomation when calling the interface.

The error message is null if invoke interface is successful.

 class DFFData
This is a set of static functions which are used for Data Reading of DFF. During the entire lifecycle of the application, no
object of this class needs to be generated.

Members

SUCCEED -> int

Description The return code of query interfaces. Value is 0.

COMMON_ERROR -> int

Description The return code of query interfaces. Value is 1.

ACS RTDI User Guide
Chapter 2 ACS Nexus

OneAPI Python SDK

v2.3.0, July 2025 165

Functions

def createQueryRequest(lotID: str, deviceIDKey: str, deviceIDVal: str, testNumber: str)
-> QueryResponse

Description Create the query request to ACS Unified Server.

Parameter Input:

• Lot ID
• DeviceIDKey
o "STDF.PART_TXT"
o "STDF.PART_ID"

• deviceIDVal: The value corresponding to deviceIDKey
• Test number

NOTE:

• When the deviceIDKey is any other value except STDF.PART_TXT” and
“STDF.PART_ID, the device id will be part_id.

Return QueryResponse res

res.result: The value express jobID.

def createRawQueryRequest(sql: str) -> QueryResponse

Description Create the raw query request to ACS Unified Server.

Parameter Input:

• SQL statement

NOTE: Make sure to enter a valid SQL query.

Return QueryResponse res

res.result: The value express jobID.

ACS RTDI User Guide
Chapter 2 ACS Nexus
OneAPI Python SDK

166 v2.3.0, July 2025

def getQueryTaskStatus(jobID: str) -> QueryResponse

Description Get the status of the query task.

Parameter Input:

• Lot ID

Return QueryResponse res

res.result: The value express status.

• “COMPLETE”
• “FAILED”
• “RUNNING”

NOTE:

When the result is RUNNING, you need to invoke this interface again after a period of time until
the result is COMPLETE or FAILED.

def getQueryResult(jobID: str, format: str) -> QueryResponse

Description Get the query result (DFFData).

Parameter Input:

• jobID
• format

o CSV
o JSON

NOTE:

When the format is any other value except CSV or JSON, the data format will be JSON.

Return QueryResponse res

res.result: The value express DFF data string.

ACS RTDI User Guide
Chapter 2 ACS Nexus

OneAPI Python SDK

v2.3.0, July 2025 167

 class DFF
This class provides functions that are used for Data Writing of the Application. During the entire lifecycle of the
application, no object of this class needs to be generated.

Member

Error codes -> int

Description Error code for calling the interface.

Name Value Expression
SUCCEED 0 Communication succeeded
COMMON_ERROR 1 Errors that are not specifically defined
TIMEOUT 2 Communication timeout
TARGET_INVALID 3 Target is invalid (due to AppDescriptor issue)
CONNECT_FAILED 4 Unable to connect to the target App
CERTIFICATE_ERROR 5 Certificate related errors
UNKNOWN_LOCATION 6 Unknown location
NOT_SUPPORT 7 Unsupported DFF feature
SCHEMA_LOAD_FAIL 101 Schema file failed to load (possible cause is that

the file is not in JSON format)
SCHEMA_SAME 102 Schema with the same $id has already been

registered by this program
SCHEMA_REGIST_FAIL 103 Schema registration failed (possible cause is that

the server is down)
SCHEMA_REGISTERED 104 Schema with the same $id has already been

registered by others
DFF_CONNECTED 111 Properties are valid and upload started, but upload

did not complete
DFF_PROPERTY_INVALID 112 Properties invalid for the schema
DFF_CONNECT_FAIL 113 Failed to establish data-upload connection
DFF_DATA_EMPTY 114 Data is empty
SCHEMA_NOT_REGISTERED 115 The process has not successfully registered the

schema

ACS RTDI User Guide
Chapter 2 ACS Nexus
OneAPI Python SDK

168 v2.3.0, July 2025

Functions

def importSchema(schema_path: str) -> int

Description Load schema from the input JSON file and register the schema to ACS Unified Server.

Parameter Input:

• JSONschema file path

Return Error codes:

• SUCCEED
• SCHEMA_LOAD_FAIL
• SCHEMA_SAME
• SCHEMA_REGIST_FAIL
• SCHEMA_REGISTERED

NOTE: When the return is SCHEMA_LOAD_FAIL or SCHEMA_REGIST_FAIL, try to stop
code from continuing execution.

def set(key: str, value: str) -> type[DFF]

Description Set property key-value pairs for subsequent data uploads.

Parameter Input:

• key
• value (the value corresponding to the key)

Return Method chaining is used here to implement a fluent interface, allowing multiple method calls to
be chained together in a single statement.

def regUploadCallback(callback: (int, Dict[str, str], str) -> None) -> None

Description Register user-defined callback function to receive upload result.

Parameter Input:

• A function that takes three arguments: result, headers, data

NOTE: Make sure to define callback as a global function, not as an inner function.

ACS RTDI User Guide
Chapter 2 ACS Nexus

OneAPI Python SDK

v2.3.0, July 2025 169

def upload(data: str) -> int

Description Asynchronously upload data to the ACS Unified Server.

Parameter Input:

• The data to be uploaded

Return Error codes:

• DFF_CONNECTED
• DFF_PROPERTY_INVALID
• DFF_CONNECT_FAIL
• DFF_DATA_EMPTY
• SCHEMA_NOT_REGISTERED

 class TestCell
This class describes the information of the Tester (which is provided by oneapi::Monitor callback functions) and is used
as the identification of the data source when consuming Nexus data. For example, when data is received, ACS Nexus can
know which Tester sent the data.

Member

testerId -> str;

Description The hostname of the tester.

testerIP -> str;

Description The IP of the tester.

ACS RTDI User Guide
Chapter 2 ACS Nexus
OneAPI Python SDK

170 v2.3.0, July 2025

 Configuration
As a dynamic library, OneAPI will statically read the contents of the environment variable for initialization when the
application process is started. The contents of the environment variable are described in the table below.

Table 2-12. OneAPI Environment Variable Descriptions

Item Description

ONEAPI_DEBUG Developers must include and call the interface provided by OneAPI in their application.
OneAPI will record status and information when executing these commands. This
environment variable is used to set the output mode of the records.

Values:

0 -- no output
1 -- enable output INFO level logs to console
2 -- enable output INFO level logs to file
3 -- enable output INFO level logs to both console and file
4 -- enable output DEBUG level logs to console
5 -- enable output DEBUG level logs to file
6 -- enable output DEBUG level logs to both console and file

NOTE:

The path of local log file is fixed to ${home}/.log/. The name follows the rule indicated
below:

ACS_ONEAPI_yyyy-mm-dd.log. (for example, ACS_ONEAPI_2023-02-21.log)

To write log files successfully, ensure that the running environment of the application meets
one of the following conditions:

• ${home}/.log/ folder does not exist, and the application has permission to create it.

${home}/.log/ folder exists, and the application has permission to write log file in it.

ACS RTDI User Guide
Chapter 2 ACS Nexus

Supporting Containerized Application on the ACS Edge and ACS Unified Servers

v2.3.0, July 2025 171

 Supporting Containerized Application on the ACS Edge and ACS
Unified Servers

ACS Nexus provides support for real-time data and control features to the containerized application running on the ACS
Edge Server and ACS Unified Server, without requiring modification of the test program. Multiple containerized
applications running on the ACS Edge and ACS Unified Server are supported.

The below diagram offers a general view of how ACS Nexus supports the containerized application running on the ACS
Edge Server.

Figure 2-1. ACS Nexus Support for Containerized Application on ACS Edge Server

To support the containerized application running on the ACS Edge Server and ACS Unified, ACS Nexus must first be
configured. ACS Nexus configuration is described in the subsections that follow.

ACS RTDI User Guide
Chapter 2 ACS Nexus
Supporting Containerized Application on the ACS Edge and ACS Unified Servers

172 v2.3.0, July 2025

 Nexus Configuration File
The acs_nexus.ini configuration file is used for initialization of the ACS Nexus service. After modifying content in
this file, ACS Nexus should be manually restarted for any changes to take effect (see Restarting ACS Nexus).

The path for the acs_nexus.ini file is /opt/acs/nexus/conf/acs_nexus.ini. To support the containerized
application running on the ACS Edge Server, you need to open this file (from the Host controller) and confirm that
Edge.Enabled is set as true and that HostController.Enabled is set as false. To support the containerized
application running on the ACS Unified Server, you need to confirm that TestFloor_Server.Enabled is set as true.

The applicable contents (and default values) of the Nexus configuration file are shown in the example below. For a
description of each item in this file, see Table 2-13.

[TestFloor_Server]
Enabled = true
Control_Port = 5001
Data_Port = 5002

[Edge]
Enabled = true
Control_Port = 7001
Data_Port = 7002
Image_Info = images.ini

[HostController]
Enabled = false
Control_Port = 7001
Data_Port = 7002
Hooks = app.ini

[GUI]
Auto_Popup = false
Auto_Close = true

ACS RTDI User Guide
Chapter 2 ACS Nexus

Supporting Containerized Application on the ACS Edge and ACS Unified Servers

v2.3.0, July 2025 173

NOTE: For the "Port" items in the table below, the port that you use should be open and available.

Table 2-13. acs_nexus.ini Content Descriptions

Item Description

TestFloor_Server

Enabled
Whether connection is supported from TestFloor_Server.

Control_Port
The port listening for control connection from TestFloor_Server. The default port is 5001.
Under normal circumstances, this port does not need to be modified unless port listening fails
to start.*

Data_Port
The port listening for data connection from TestFloor_Server. The default port is 5002. Under
normal circumstances, this port does not need to be modified unless port listening fails to
start.*

Brokers
Brokers to upload Nexus data to ACS Unified Server (AUS). The default brokers are:
unifiedserver.local:29092,unifiedserver.local:39092,unifiedserver.local:49092

The above default brokers do not need to be modified under normal circumstances, unless the
Kafka service configuration on AUS has changed. For example, if the AUS provides Kafka
service on ports 5092, 5093, and 5094, the Brokers setting needs to be updated, and ACS
Nexus must be restarted for the changes to take effect.

Edge

Enabled
Whether connection is supported from the ACS Edge Server.
NOTE: Only either Edge or HostController can be set to enabled, not both.

Control_Port
The port listening for control connection from the ACS Edge Server. The default port is 7001.
Under normal circumstances, this port does not need to be modified unless port listening fails
to start.*

Image_Info
The name of image configuration file. This file must be deployed in the folder
/opt/acs/nexus/conf/.

HostController

Enabled
Whether connection is supported from the Host controller.
NOTE: Only either Edge or HostController can be set to enabled, not both.

Control_Port
The port listening for control connection from the Host controller. The default port is 7001.
Under normal circumstances, this port does not need to be modified unless port listening fails
to start.*

Data_Port
The port listening for data connection from the Host controller. The default port is 7002.
Under normal circumstances, this port does not need to be modified unless port listening fails
to start.*

Hooks

ACS RTDI User Guide
Chapter 2 ACS Nexus
Supporting Containerized Application on the ACS Edge and ACS Unified Servers

174 v2.3.0, July 2025

Item Description

The name of the application configuration file. This file must be deployed in the folder
/opt/acs/nexus/conf/.

GUI

Auto_Popup
Whether to display the ACS Nexus GUI after SmarTest session is ready. When ACS Nexus is
started after SmarTest is started, the ACS Nexus GUI will display after ACS Nexus is started.

Auto_Close
Whether to close the ACS Nexus GUI after SmarTest session is terminated. When SmarTest
session is terminated, the ACS Nexus GUI will automatically close.

Auto_Deploy Enabled
Whether to support auto deploy mode. Set to 'true' to enable auto deploy mode, otherwise set
to 'false.' For more information, see Auto Deploy Mode.

 * For example, if the default port has been occupied or blocked by the firewall (which can be confirmed through the control log). If
this happens, the port needs to be modified and ACS Nexus needs to be restarted for the change to take effect. Successful listening
can be confirmed through the control log or by using the Linux system command 'netstat'.

ACS RTDI User Guide
Chapter 2 ACS Nexus

Supporting Containerized Application on the ACS Edge and ACS Unified Servers

v2.3.0, July 2025 175

Restarting ACS Nexus
For any changes to acs_nexus.ini to take effect, ACS Nexus should be stopped and manually restarted. Follow the
procedure below to manually restart ACS Nexus.

1. Ensure SmarTest is already shutdown.

2. Open a command terminal and stop ACS Nexus by entering the following command (root user only):

#systemctl stop acs_nexus.service

3. To confirm that no ACS_Nexus processes are running, enter:

#ps -ef | grep acs/nexus | grep -v grep

The output for the above command should be empty.

4. Start ACS Nexus by entering the following command (root user only):

#systemctl start acs_nexus.service

5. To confirm that ACS_Nexus processes are started, enter:

#ps -ef | grep acs/nexus | grep -v grep

Below is an output example (SmarTest 7) for the above command.

root 112973 1 0 Jul07 ? 00:00:17 /opt/acs/nexus/bin/acs_nexus

root 112985 1 0 Jul07 ? 00:07:07 /opt/acs/nexus/bin/control_smt7 &

ACS RTDI User Guide
Chapter 2 ACS Nexus
Supporting Containerized Application on the ACS Edge and ACS Unified Servers

176 v2.3.0, July 2025

 Auto Deploy Mode
NOTE: Auto Deploy mode is the default setting. In this mode, ACS Nexus supports production together with other

RTDI products.

To dynamically deploy the specified Applications to the ACS Edge Server in real time according to production
requirements, RTDI users must be able to query Application information from the ACS Container Hub through ACS
Nexus before each production start. This mode is called Auto_Deploy mode, and the Application information file is
called AppDescriptor.

To change the configuration to Auto Deploy mode, set Auto_Deploy.Enabled to 'true' in
/opt/acs/nexus/conf/acs_nexus.ini.

When Auto_Deploy mode is enabled, ACS Nexus will use AppDescriptor (QueryAppDescriptor) as the configuration
file to manage the Application lifecycle during production. ACS Nexus loads AppDescriptor when the SmarTest session
starts. Therefore, make sure to call the query tool (QueryAppDescriptor) before the SmarTest session starts.

The path for AppDescriptor is /opt/acs/nexus/bin/QueryAppDescriptor. The table below provides information
on the Command Line Interface parameters.

Table 2-14. Command Line Interface Parameter Details

Parameter Meaning Required Description Default
Value

-h Help No Show help information and then exit. NA

-v Version No Show the version and then exit. NA

-c Customer name Yes Set the customer name. Identifies the current
customer so that it can be mapped to the according
Container Hub Organization.

(empty)

-d Device name Yes Set the device name. (empty)

-f Product family No Set the product family. (empty)

-n Test Program
name

No Set the test program name. (empty)

-r Test Program
revision

No Set test program revision. (empty)

-u URL No Set the basic url address for sending the query
command.

The default address is:
https://unifiedserver.local/deployment/v1/application-
descriptors/query

-o Output file No Set the absolute path of the output file, which stores
the data part of the returned json format information.

The default path is:

/opt/acs/nexus/conf/app_descriptor.json

ACS RTDI User Guide
Chapter 2 ACS Nexus

Supporting Containerized Application on the ACS Edge and ACS Unified Servers

v2.3.0, July 2025 177

 Non-Auto Deploy Mode (Auto Deploy Mode Disabled)
NOTE: Non-Auto Deploy mode is used for engineering purposes only. To use Non-Auto Deploy mode, set

Auto_Deploy.Enabled to false /opt/acs/nexus/conf/acs_nexus.ini.

The images configuration file (images.json) is used to define the containerized application that needs to be deployed
and executed on the ACS Edge Server by ACS Nexus for a specific device.

The path for the images.json file is /opt/acs/nexus/conf/images.json. The contents and default values of this
file are shown below. For a description of each item in this file, see Table 2-15. For any modifications to this file to take
effect, SmarTest must be restarted.

NOTE: Starting from ACS Nexus v2.0.0, the "images" file format is changed from .ini to .json. With this change, all
image-related functions require ACS Edge Server version 2.3.1 or higher.

{
 "selector": {
 "device_name": "xxx.tp"
 },
 "edge": {
 "address": "xxx.xxx.xxx.xxx",
 "registry": {
 "address": "xxx.xxx.xxx.xxx",
 "user": "xxx",
 "password": "xxx"
 },
 "containers": [
 {
 "name": "mycontainer",
 "image": "test/myapp:latest",
 "requirements": {
 "gpu": false,
 "exposed_ports": [
 80,
 443
],
 "mapped_ports": [
 "9001:9001",
 "9002:9002/tcp"
]
 },
 "environment": {
 "VARNAME": "value",
 "VARNAME2": "value2"
 },
 "metrics": {
 "port": 9001,
 "path": "/metrics",
 "scrape_interval": 90,
 "scrape_timeout": 5
 },
 "volume_attachments": [
 "myvolume:rw",
 "myvolume2:ro"

]

ACS RTDI User Guide
Chapter 2 ACS Nexus
Supporting Containerized Application on the ACS Edge and ACS Unified Servers

178 v2.3.0, July 2025

 }
],
 "volumes": [
 {
 "name": "myvolume",
 "image": "myorg-myproject/mydata:latest"
 },
 {
 "name": "myvolume2",
 "image": "myorg-myproject/mydata:latest"
 }
]
 }
}###

Table 2-15. images.json Content Descriptions

Item Description

selector
device_name
Set the device name that will run.

edge
address
Configure the Edge Server IP. Used for development testing only. Do not
configure in production.

edge.registry

address
The location of container registry, such as ACS Container Hub or Docker
hub.

user
Authentication username for registry when pulling an image.

password
Authentication password for registry when pulling an image.

edge.containers

name
The name of the container.

image
The name of the image.

environment
Set the environment variable for the container.

metrics
Set the metrics for the container.

edge.containers.requirements

gpu
Configure whether the corresponding container enables GPU.
Valid value: true/false

exposed_ports
This option can be used to expose container ports.

ACS RTDI User Guide
Chapter 2 ACS Nexus

Supporting Containerized Application on the ACS Edge and ACS Unified Servers

v2.3.0, July 2025 179

mapped_ports
Use this option to expose and publish container ports.

edge.containers.volume_
attachments

This option is used to set the attach mounted volumes.

edge.containers.volumes

name
Define the volume name to create.

image
Define the image to create the volume.

 Container Configuration File
NOTE: Starting in ACS Nexus v2.0.0, the container configuration file is not supported. The configuration file can be

placed into a volume which is attached to a specific container.

 Workflow
NOTE 1: Make sure the application is running before starting production from Prober/Handler side, otherwise there

could be data lost at the beginning of lot. Refer to the Nexus GUI for application status.

NOTE 2: Do not stop or restart Nexus during SmarTest session, otherwise Applications on the Edge server cannot be
destroyed automatically. This will result in an exception in the deployment of Applications on the Edge server
the next time SmarTest is started.

Following is a diagram that illustrates workflow of the Application on the ACS Edge Server.

Figure 2-2. Application Workflow on ACS Edge Server

ACS RTDI User Guide
Chapter 2 ACS Nexus
Supporting Application on the Host Controller

180 v2.3.0, July 2025

 Supporting Application on the Host Controller
ACS Nexus provides support for real-time data and control capability to the application running on the Host controller.
Only one application runtime is supported inside the Host controller, meaning that only one application can connect to
consume data and send commands. For other applications, the application vendor must determine how to share the data.

The below diagram offers a general view of how ACS Nexus supports the containerized application running on the Host
controller.

Figure 2-3. ACS Nexus Support for Containerized Application on Host Controller

 Nexus Configuration File
The acs_nexus.ini configuration file is used for initialization of the ACS Nexus service. After modifying content in this
file, ACS Nexus should be manually restarted for any changes to take effect (see Restarting ACS Nexus).

The path for the acs_nexus.ini file is /opt/acs/nexus/conf/acs_nexus.ini. To support the application running
on the Host controller, you need to open this file (from the Host controller) and set Edge.Enabled as false and set
HostController.Enabled as true, as shown below. For a description of each item in this file, see Table 2-13.

[TestFloor_Server]
Enabled = true
Control_Port = 5001
Data_Port = 5002

[Edge]
Enabled = false
Control_Port = 7001
Data_Port = 7002
Image_Info = images.ini

[HostController]
Enabled = true
Control_Port = 7001
Data_Port = 7002
Hooks = app.ini

[GUI]
Auto_Popup = false
Auto_Close = true

ACS RTDI User Guide
Chapter 2 ACS Nexus

Supporting Application on the Host Controller

v2.3.0, July 2025 181

 Application Configuration File
The application configuration file (app.ini) is used for hooks of the application in the Host controller. After modifying
content in this file, ACS Nexus should be manually restarted for any changes to take effect (see Restarting ACS
Nexus).

The path for the app.ini file is /opt/acs/nexus/conf/app.ini. The contents (and default values) of this file are
shown below. For a description of each item in this file, see Table 2-16.

[app1]
smt.session_ready = /home/demo/app/bin/start.sh
smt.session_terminated = /home/demo/app/bin/stop.sh
nexus.completed = =latest
operate_timeout=300

Table 2-16. Container Configuration File Content Descriptions

Item Description

[demoAppName]
This is the host controller application name. The user can assign any name, but the
item name must be unique. Every item configured means that ACS Nexus need to
handle this application.

smt.session.ready The script that will be executed when the SmarTest session is read. This item is
normally used for starting the application.

smt.session_terminated The script that will be executed when SmarTest session is terminated. This item is
normally used for stopping the application.

nexus.completed The script which will be executed when Nexus is terminated. This item is normally
used for stopping the application.

NOTE: Make sure that the application is connected to ACS Nexus before starting production from the prober/handler
side. Otherwise, data can be lost at the beginning of the lot.

ACS RTDI User Guide
Chapter 2 ACS Nexus
Supporting Application on the Host Controller

182 v2.3.0, July 2025

 Workflow
Following is a diagram that illustrates workflow of the Application on the Host Controller.

Figure 2-4. Application Workflow on Host Controller

ACS RTDI User Guide
Chapter 2 ACS Nexus

ACS Nexus GUI

v2.3.0, July 2025 183

 ACS Nexus GUI
NOTE: ACS Nexus automatically starts and runs perpetually on the Host Workstation after installation. If an ACS

Nexus restart is needed, see Restarting ACS Nexus.

ACS Nexus provides a graphic interface to present the system status, command records, and exception information, all
of which can be automatically started and closed according to ACS Nexus configuration. The ACS Nexus GUI consists
of a System Status area that provides connection status information for all connected systems, and an Information area
that provides command records and exception information, as indicated in the figure below.

NOTE: Only one user at a time can run ACS Nexus on the same Host Workstation.

Figure 2-5. ACS Nexus GUI

License availability information is displayed by circular indicator in the lower right of the window. This indicator
represents data collection license availability. Green indicates the license is available, red indicates that the license is
either missing or invalid, and grey indicates that the license is not checked.

For additional details on the ACS Nexus GUI, see Table 2-17 and Table 2-18.

ACS RTDI User Guide
Chapter 2 ACS Nexus
ACS Nexus GUI

184 v2.3.0, July 2025

Table 2-17. System Status Indicators

System Status Indicator

Session Ready
SmarTest Session has been started. Shows the SmarTest version (SMT7 or SMT8).

Idle
SmarTest Session has been already terminated. Shows the SmarTest version (SMT7 or
SMT8)

Host Controller Disabled
ACS Nexus does not provide connection service to the application based on OneAPI at the
Host Controller.

Initial Fail
ACS Nexus failed to provide connection service to the application based on OneAPI at the
Host controller.

Disconnected
ACS Nexus is ready to provide connection service to the application based on OneAPI at the
Host controller, but no application is connected at present.

Connected
ACS Nexus is ready to provide connection service to the application based on OneAPI at the
Host controller, and the application is currently connected.

ACS Edge Server Disabled
ACS Nexus is configured not to provide service to ACS Edge Server.

Enabled
ACS Nexus is configured to provide service to ACS Edge Server.

Down
ACS Nexus detects that ACS Edge Server is not available.

Available
ACS Nexus detects that ACS Edge Server is available, and ACS Nexus is ready to provide
service to the Edge Server.

ACS Unified Server Enabled
ACS Nexus is configured to monitor connection status to the ACS Unified Server.

No Monitoring
ACS Nexus is configured not to monitor connection status to ACS Unified Server.

Not Available
ACS Nexus is configured to monitor connection status to the ACS Unified Server, but the
ACS Unified Server is not presently responding.

Available
ACS Nexus is configured to monitor connection status to the ACS Unified Server, and the
ACS Unified Server is currently responding.

ACS RTDI User Guide
Chapter 2 ACS Nexus

ACS Nexus GUI

v2.3.0, July 2025 185

Table 2-18. Information Area Contents

Item Status Indicator

Record of Control
Information*

This area will record the information of control commands triggered by the application. Each
line presents a command with the following information, separate by "|". For example:
2023—07-15 10:00:15 Edge|DebugApp_ADV_01|at 2023-07-15 10:00:15|PAUSE|just
test for Pause Command sent from Edge

2023—07-15 10:00:30 Edge|DebugApp_ADV_01|at 2023-07-15 10:00:30|STOP|just
test for Stop Command sent from Edge

Received time
The timestamp when ACS Nexus received this command.

Resource
The resource of the command, either Edge or TestFloor_Server

Application
The application information in the form of: {Name}_{Vendor}_{Version}.

Sent time
The timestamp when the application sent this command.

Command
The name of command, either Pause or Stop.

Reason
The reason why application sends this command. There is no limit to the text format.

Exception
Information*

This area will print the exception information related to dynamic switch. Each line presents an
exception with the following information starting with "Warning." For example:
Warning|2023-06-08 14:56:44|Edge -> Edge connection is enabled, but no
images are configured

Received time
The timestamp when ACS Nexus threw this exception.

Resource
The resource of the exception (switch container).

Reason
The reason why application throws this exception. There is no limit to the text format.

Container Status
Information

The container name and status information is displayed in a table. Hover over the container
name to display the image:tag. Image-related status or container status is displayed as
described below:

pullStarting
ACS Nexus is starting to pull image of target application.

pullSuccess
ACS Nexus pulls image of target application successfully.

pullFailed
ACS Nexus image pull of the target application failed.

pullTimeout
ACS Nexus pulls image of target application timeout.

ImageDeleteStarting
ACS Nexus is starting to delete the image of target application.

ACS RTDI User Guide
Chapter 2 ACS Nexus
ACS Nexus GUI

186 v2.3.0, July 2025

Item Status Indicator

imageDeleteSuccess
ACS Nexus deleted image of the target application successfully.

imageDeleteFailed
ACS Nexus failed to delete image of the target application.

creating
ACS Nexus is starting to create the target application container.

created
ACS Nexus creates target application container successfully and container has never started
since creation.

createFailed
ACS Nexus failed to create target application container.

runStarting
ACS Nexus is starting to run target application container.

running
The target application container is running.

runFailed
The target application container run failed.

stopStarting
ACS Nexus is starting to stop target application container.

stopFailed
ACS Nexus failed to stop target application container.

removeStarting
ACS Nexus is starting to remove target application container.

removed
The target application container is removed.

removeFailed
Removal of the target application container failed.

restarting
The target application container is in the process of restarting.

paused
The target application suspends all the processes for an indefinite time.

exited
The target application process inside the container terminated.

dead
This state is achieved when trying to remove the target application container, but it cannot be
removed because some resources are still in use by an external process.

removing
The target application container is being removed.

unknown
An error occurred while getting the status.

ACS RTDI User Guide
Chapter 2 ACS Nexus

ACS Nexus GUI

v2.3.0, July 2025 187

Item Status Indicator

License Status

Indicates the current license status. The status light will show one of two states:

Green - indicates that the ACS Nexus DataCollection license is valid

Red - indicates that the ACS Nexus DataCollection license is invalid.

Grey – indicates that the ACS Nexus DataCollection license is not checked.

Certificate
Expiration
Reminder

When the GUI is launched, ACS Nexus will check the validity of the certificate. No prompt
will be given if the usable period is greater than seven days, if the usable period is less than
seven days or the certificate has expired, this area will print the exception information related
to certificate status, with following information:

Received time
The timestamp when ACS Nexus threw this exception.

Reason
The reason why ACS Nexus threw this exception. There is no limit to the text format.

*This area will be cleared in the event of SmarTest startup or ACS Nexus reboot.

ACS RTDI User Guide
Chapter 2 ACS Nexus
STDF Replay

188 v2.3.0, July 2025

 STDF Replay
This section describes how to use STDF replay. The basic steps are as follows:

1. Change the nexus mode in acs_nexus.ini configuration file.

2. Use the Edge Control Tool to start the container.

3. Use the Data Replay Tool to replay the STDF file.

WARNING: Only one client can connect at a time. If multiple clients connect at the same time, it may cause some
unknown errors.

1. Change the Nexus Mode.
The Nexus mode must be changed in the acs_nexus.ini file. The path for this configuration file is
/opt/acs/nexus/conf/acs_nexus.ini. In this file, change the Nexus Mode to "replay."

[Mode]

Nexus_Mode=replay

Confirm that Edge is enabled (true). The default setting is true, so there should be no need to modify this parameter.

[Edge]

Enabled=true

After the Nexus Mode is changed, the ACS Nexus must be restarted for the change to take effect. Manually restart ACS
Nexus by entering the following in a command line on the Host workstation:

systemctl restart acs_nexus.service

ACS RTDI User Guide
Chapter 2 ACS Nexus

STDF Replay

v2.3.0, July 2025 189

2. Use the Edge Control Tool to start the container.
The path for the Edge Control Tool is /opt/acs/nexus/bin/EdgeControlTool. This is a command line tool. Use -h to see
command help.

WARNINGS: Observe the below warnings when using the Edge Control Tool.

• This tool can only reply one STDF file at one time.

• The STDF file size should be less than 10GB.

• The input parameters are required to be in a fixed order. For example, the following would be
considered invalid input:

./EdgeControlTool stop -registry 192.168.0.1:5000 -edge_ip 127.0.0.1 -
name spc-app -tag latest -user default -passwd default -operate_time 300
-host_ip 192.168.0.1 -container_name app1

• Ensure that the image has been pulled successfully before starting a container.

• Ensure that the container has been closed successfully before deleting the image.

• This tool does not support multiple processes running at same time. For example, it may behave
unexpectedly in the following case:

./EdgeControlTool -h & ./EdgeControlTool pull xxx &&

./EdgeControlTool start xxx

Table 2-19. Edge Control Tool Usage

Action Example

Command Help ./EdgeControlTool -h

Pull Image
./EdgeControlTool pull -edge_ip 127.0.0.1 -registry 192.168.0.1:5000 -
name spc-app -tag latest -user default -passwd default -operate_time 300
-host_ip 192.168.0.1 -container_name app1

Delete Image
./EdgeControlTool delete -edge_ip 127.0.0.1 -registry 192.168.0.1:5000 -
name spc-app -tag latest -user default -passwd default -operate_time 300
-host_ip 192.168.0.1 -container_name app1

Start Container
./EdgeControlTool start -edge_ip 127.0.0.1 -registry 192.168.0.1:5000 -
name spc-app -tag latest -user default -passwd default -operate_time 300
-host_ip 192.168.0.1 -container_name app1

Stop Container
./EdgeControlTool stop -edge_ip 127.0.0.1 -registry 192.168.0.1:5000 -
name spc-app -tag latest -user default -passwd default -operate_time 300
-host_ip 192.168.0.1 -container_name app1

3. Use the Data Replay Tool to Replay the STDF File
See Data Replay Tool.

ACS RTDI User Guide
Chapter 2 ACS Nexus
Data Replay Tool

190 v2.3.0, July 2025

 Data Replay Tool
After starting a container, use the Data Replay to replay the STDF file. This tool it is a command line tool. Use -h to see
command help.

Table 2-20. Data Replay Tool Usage

Action Example

Command Help ./data_replay -h

Replay STDF

./data_replay -I XXX.stdf

For other functions, see the configuration file /opt/acs/nexus/conf/data_replay.ini.

NOTES: For the "indextime" key in [test_item], it will delay from the touchdown end to the next touchdown start
and support a range from 0-10000 ms. If the configuration is more than 10000 ms, use 10000.

For the "test_num" key, it is configured for every "testnumber:delaytime" and split by ";". The
delaytime unit is ms. The supported range is 0-10000. If the configuration is more than 10000 ms, use 10000.
If there is an error in the format, some unexpected issues may occur.

For the "quittime" key in the process, it is sometimes necessary for the process to continue for a while before
exiting.

All index time will delay 200ms. After test number reaches 100, ACS Nexus will delay 300ms before sending the next
event. After making changes to data_replay.ini, data_replay will need to be restarted.

WARNING: The test_num key needs to be configured as test number and the delay time (testnumber:delaytime)
or unexpected errors may occur.

ACS RTDI User Guide
Chapter 2 ACS Nexus

FAST-API Support on ACS Edge

v2.3.0, July 2025 191

 FAST-API Support on ACS Edge
FAST-API service is supported for the containerized application running on the ACS Edge Server to communicate with
the Host Controller test program. The below diagram illustrates the flow for FAST-API support within the RTDI
environment.

Figure 2-6. Fast API Support in RTDI Environment

 Configuration
To set-up FAST-API support, the first step is to login to the ACS Container Hub to configure your own application by
specifying the mapping relationship between the port your application listens to and the open port of the ACS Edge
Server. For specific operation steps, contact your Advantest representative.

NOTE: ACS Nexus currently only supports a single application and a single mapped_port.

 Nexus Query Application Description File
Use the ACS Nexus query tool (QueryAppDescriptor) to obtain the application description file before starting Smartest.
For specific operations relating to the query tool, see Auto Deploy Mode.

 Nexus Configuration
In the ACS Nexus configuration file (acs_nexus.ini), set [Gateway/Auto_Start] and [Gateway/Auto_Close] to
true, as shown below.

ACS RTDI User Guide
Chapter 2 ACS Nexus
ACS Edge Redundancy Support

192 v2.3.0, July 2025

 Access FAST-API Service
After the container is started, you can access the fast API service through the following URL:

http://localhost:8888/[your_api_path]

 ACS Edge Redundancy Support
ACS Nexus automatically switches customer containerized application between the ACS Edge Server of test cell and the
Edge Services on the ACS Unified Server.

The Gateway redirects the request from the customer-specific http client to the customer containerized application
running on the ACS Edge Server or customer containerized application running in the Edge Services on the ACS Unified
Server, as illustrated in the diagram below.

Figure 2-7. Edge Redundancy Gateway Redirection

Following are limitations of the ACS Edge redundancy feature:

• This feature only supports applications that do not include OneAPI.
• This feature requires a Gateway to work together to support it.
• This feature only supports one application.
• ACS Nexus only switches applications to Edge Services on the Unified Server, so pulling an image to the Unified

Server may take a long time and some results will be lost.

ACS RTDI User Guide
Chapter 2 ACS Nexus

ACS Edge Redundancy Support

v2.3.0, July 2025 193

 Usage Cases

Usage Case 1:

Upon starting Smartest, ACS Nexus will check if the ACS Edge Server is online. If the ACS Edge server is not online or
not operating, ACS Nexus will open the customer containerized Application in Edge Services on the Unified Server.

Usage Case 2:

While the customer containerized Application is running, if ACS Nexus detects that the ACS Edge Server is down, it will
open the customer containerized Application in the Edge Services on the Unified Server.

Usage Case 3:

If the ACS Nexus opened the customer containerized Application on the Unified Server previously due to the ACS Edge
Server being down or offline, when ACS Nexus starts the container next time and the ACS Edge Server has already
recovered by then, the customer containerized Application will be running in the ACS Edge Server again.

 Configuration
The ACS Edge redundancy feature is disabled by default. To enable this feature, the correct configuration must be
implemented in acs_nexus.ini, as indicated below:

• [Edge/Redundancy_Enabled] must be set to true

• [Auto_Deploy/ Enabled] must be set to true

 Gateway
Gateway must be installed in the following folder:

 /opt/acs/nexus/gateway

Gateway runs on port 8888 by default, but can be changed to a different port. To change the port, modify the port number
in the configuration file located in /opt/acs/nexus/gateway/conf . The modified configuration file will not take effect until
the next time Gateway is started.

The Gateway lifecycle is managed using the ACS Nexus configuration file (acs_nexus.ini) as follows:

• When [Gateway/Auto_Start = true], the Gateway will be started when Smartest starts.

• When [Gateway/Auto_Close=true], the Gateway will be closed when Smartest is terminated.

ACS RTDI User Guide
Chapter 2 ACS Nexus
Bi-Directional Communication between TP and RTDI Application

194 v2.3.0, July 2025

 Bi-Directional Communication between TP and RTDI Application
To facilitate a modern test scheme, whereby the test flow and test parameters can be dynamically adjusted for each touch
down, ACS RTDI can open the communication channel between the test program and RTDI Application so that they can
transmit data and calculation results in real time. This bi-directional communication is supported using NexusTPI and
OneAPI.

 NexusTPI
NexusTPI is a dynamic library for the test program. When the user needs to utilize communication between the test
program and RTDI Application, the interfaces provided by this library needs to be called in the test program code.

 NexusTPI for SMT8
NOTE: NexusTPI is supported starting in Nexus v2.1.0. Supported for SMT 8.6.x and Java 11/17.

After installing Nexus (v2.1.0 or higher), NexusTPI.jar can be found in the following path:

/opt/acs/nexus/testmethod/smt8/

To import NexusTPI.jar, follow these steps:

1. On the SmarTest WorkCenter, select Device. Right-click and select [Build Path] in the pop-up menu, then
select [Add External Archives…] in the subsequent pop-up menu as shown below.

Figure 2-8. Add External Archives

2. In the new dialog box called JAR Selection, find the /opt/acs/nexus/testmethod/smt8/ folder, click
NexusTPI.jar, and click [OK].

Figure 2-9. Select NexusTPI.jar

ACS RTDI User Guide
Chapter 2 ACS Nexus

Bi-Directional Communication between TP and RTDI Application

v2.3.0, July 2025 195

3. For a successful addition, you should be able to see NexusTPI.jar in the [Libraries] tab in the Device's Build
Path, as shown below.

Figure 2-10. NexusTPI.jar in Device Build Path

Using NexusTPI interfaces
Table 2-21 below provides information on the NexusTPI interfaces. Table 2-22 provides error code information.

Table 2-21. NexusTPI Interfaces

Interface Function Parameters Return Example

init()

Specify initialize step
before executing other
NexusTPI interface
functions.

NOTE: It is strongly
recommended to invoke
NexusTPI.init() in the
setup stage.

None Error Code (int) See Example 1

location(String) Specify the location of the
RTDI Application

"aus" or "edge"
(string)

NexusTPI See Example 2

target(String) Specify target RTDI
Application.

Container Name NexusTPI See Example 3

timeout(int)

Set timeout for the
communication.

• minimum 1
• maximum 10

If the input parameter is
outside this range, the
upper and lower limits of
this range are taken.

Timeout value (in
seconds)

NexusTPI See Example 4

send(String)

Send data to target
application.

No response required.

The data to be sent Error Code (int) See Example 5

ACS RTDI User Guide
Chapter 2 ACS Nexus
Bi-Directional Communication between TP and RTDI Application

196 v2.3.0, July 2025

Interface Function Parameters Return Example

request(String)

Initial request to target
application. Response is
required.

Content of the
request

(JSON formatted
string)

Error Code (int) See Example 6

getResponse()

Get response message.
Should be used after
"request" interface
succeeds.

None Response (string) See Example 6

DFF Get single instance of DFF
implementation class to
perform subsequent DFF
operations.

None N/A

DFF.importSchema(String) Load schema from input
JSON file, and register the
schema to the ACS
Unified Server

Schema file path
(string)

Schema code
success or error
(int)

DFF.set(String,Object) Set property key-value
pairs for subsequent data
uploads

Property key
(string)

Property value
(object)

This

DFF.regUploadCallback
(Callback)

Register user-defined
callback function to
receive upload result

Methods for
implementing
callback functions

No

DFF.upload(String) Asynchronous upload data
to ACS Unified Server

The DFF data to be
sent (string)

DFF upload code
success or error
(int)

DFF.query(String) Create query request with
direct SQL query
statement

DB query
statement (string)

Response
(NexusTPI.Result)

code
(API return code)

body[0] (jobIDF)

DFF.
getJobResult(String,String)

Obtain the query status
and DFF data according to
the JobID

JobID (string)

Format (string)

a:"json"

Response
(NexusTPI.Result)

code
(API return code)

body[0] (error
msg)

body[1] (dff-data)

ACS RTDI User Guide
Chapter 2 ACS Nexus

Bi-Directional Communication between TP and RTDI Application

v2.3.0, July 2025 197

Example Code 1: init()

import nexus.tpi.NexusTPI;

public class TPI_Test_Suite extends TestMethod {

 @Override
 public void setup(){
 int code = NexusTPI.init()；
 if(code == NexusTPI.SUCCEED){
 //successful initialization
 }else{
 //fail initialization,for example NexusTPI.LICENSE_INVALID = 6
 }
 }

 @Override
 public void excute(){
 NexusTPI.location("aus").target("appName").send("command");
 }
}

Example Code 2: location()

import nexus.tpi.NexusTPI;

String location= "aus";
NexusTPI.location(location)；

Example Code 3: target()

import nexus.tpi.NexusTPI;

String appName = "app1";
NexusTPI.target(appName)； // specify target app as "app1"

Example Code 4: timeout()

import nexus.tpi.NexusTPI;

int t_out = 1; // timeout 1 second
NexusTPI.timeout(t_out);

ACS RTDI User Guide
Chapter 2 ACS Nexus
Bi-Directional Communication between TP and RTDI Application

198 v2.3.0, July 2025

Example Code 5: send()

import nexus.tpi.NexusTPI;

String appName = "App1";
String data = "xxxxxxxxxxxx";
int res = NexusTPI.SUCCEED;

// case 1: full chain call
res = NexusTPI.target(appName).timeout(2).send(data);

// case 2: syntax sugar – implicit use the last target and timeout
res = NexusTPI.send(data); // send data to last target with last timeout

Example Code 6: request() + getResponse()

import nexus.tpi.NexusTPI;

String appName = "App1";
String requestJSON = "{\"key\" : \"command_for_test\"}";
int res = NexusTPI.SUCCEED;

// case 1: full chain call
res = NexusTPI.target(appName).timeout(2).request(requestJSON);

// case 2: syntax sugar – implicit use the last target and timeout
res = NexusTPI.request(requestJSON);

String response;
if (res == NexusTPI.SUCCEED) {
 response = NexusTPI.getResponse();
}

ACS RTDI User Guide
Chapter 2 ACS Nexus

Bi-Directional Communication between TP and RTDI Application

v2.3.0, July 2025 199

Table 2-22. Nexus TPI Error Code Descriptions

Code(int) Code(var) Definition

0 SUCCEED Communication succeeded

1 COMMON_ERROR Common Error (Errors that are not specifically defined)

2 TIMEOUT Communication time out

3

TARGET_INVALID Target is invalid

NOTE: This usually means that the target Application is
not defined in the AppDescriptor file or the
Application's configuration is illegal.

4 CONNECT_FAILED Unable to connect to the target Application

5 CERTIFICATE_ERROR Certificate related errors

6 LICENSE_INVALID License is invalid

101 SCHEMA_LOAD_FAIL Schema file failed to load, (possible cause is that the file
is not in JSON format)

102 SCHEMA_SAME Schema with the same $id has already been registered by
this Program

103 SCHEMA_REGIST_FAIL Schema registration failed (possible cause is that the
server is down)

104 SCHEMA_REGISTERED Schema with same $id has already been registered by
others

111 DFF_CONNECTED Properties are valid and upload started, but upload did not
complete

112 DFF_PROPERTY_INVALID Properties invalid for the schema

113 DFF_CONNECT_FAIL Failed to establish data-upload connection

114 DFF_DATA_EMPTY Data is empty

115 SCHEMA_NOT_REGISTERED The process has not successfully registered the schema

121 JOB_FAILED Job execution failure

122 JOB_RUNNING Job is being executed

ACS RTDI User Guide
Chapter 2 ACS Nexus
Bi-Directional Communication between TP and RTDI Application

200 v2.3.0, July 2025

 NexusTPI for SMT7
After installing Nexus v2.3.0 or higher, libNexusTPI.so can be found in the following path:

/opt/acs/nexus/testmethod/smt7/sh_lib-EL7-64bit/

To import libNexusTPI, follow these steps:

1. Include the header file path in the C/C++ compiler.

a. In the C/C++ perspective, right-click the test method project and select the Properties menu to display the
project Properties window.

b. In the Properties window, click the Settings option under C/C++ Build (in the left-side pane).
c. In the Tool Settings tab, click the Includes option under GCC C++ Compiler.
d. Add the NexusTPI.h header file path to the Include paths list.

Path: /opt/acs/nexus/testmethod/smt7/include

Figure 2-11. Include Header File Path

b.

c.

d.

ACS RTDI User Guide
Chapter 2 ACS Nexus

Bi-Directional Communication between TP and RTDI Application

v2.3.0, July 2025 201

1. Include the library file path and name in the C/C++ linker.

a. In the Tool Settings tab, click the Libraries option under GCC C++ Linker.

b. Add the libNexusTPI.so library file name to the libraries list.

c. Add the libNexusTPI.so library file path to the library search paths list.

Path: /opt/acs/nexus/testmethod/smt7/sh_lib-EL7-64bit

Figure 2-12. Including Library File Path and Name in Linker

a.

b.

c.

ACS RTDI User Guide
Chapter 2 ACS Nexus
Bi-Directional Communication between TP and RTDI Application

202 v2.3.0, July 2025

2. Include the library path in the C/C++ linker option.

a. In the Tool Settings tab, click the Miscellaneous option under GCC C++ Linker.

b. Add the rpath option to the other options list.
Path: -rpath=/opt/acs/nexus/testmethod/smt7/sh_lib-EL7-64bit

Figure 2-13. Including library path in Linker Option

3. To build the test method project, click Project > Build All.

a.

b.

ACS RTDI User Guide
Chapter 2 ACS Nexus

Bi-Directional Communication between TP and RTDI Application

v2.3.0, July 2025 203

Using NexusTPI interfaces
Table 2-23 below provides information on the NexusTPI interfaces. Table 2-24 provides error code information.

Table 2-23. NexusTPI Interfaces

Interface Function Parameters Return Example

NexusTPI & init()

Specify initialize step
before executing other
NexusTPI interface
functions.

None Return
NexusTPICode:

(int)

See Example 1

NexusTPI & location(string)

Specify the location of the
communication target
where the ContainerApp is
running.

"aus" or "edge"

(const std::string&)

NexusTPI &

NexusTPI & target(string)
Specify the target RTDI
Application.

Container Name

(const std::string&)

NexusTPI &

NexusTPI & timeout(int)

Set timeout for the
communication.

• minimum 1
• maximum 10

If the input parameter is
outside this range, the
upper and lower limits of
this range are taken.

Timeout value in
seconds

(int)

NexusTPI &

send(String)

Send data to the target
application.

Response is required.

The data to be sent

(const std::string&)

NexusTPICode See Example 2

request(String)

Initial request to the target
application. Response is
required.

Content of the
request

(JSON formatted
const)

std::string&

NexusTPICode See Example 3

getResponse()

Get the response message.
Should be used after
"request" interface
succeeds.

None Response
(std::string)

See Example 3

ACS RTDI User Guide
Chapter 2 ACS Nexus
Bi-Directional Communication between TP and RTDI Application

204 v2.3.0, July 2025

Example Code 1: init

NexusTPI& tpi = NexusTPI::getInstance();
int res = tpi.init();
cout << "NexusTPI init result:" << res << endl;

Example Code 2: send()

NexusTPI& tpi = NexusTPI::getInstance();

string data = "your data";

NexusTPICode res_send = tpi.target("container_tpi").location("aus").send(data);

cout << "res_send:" << res_send << endl;

Example Code 3: request() + getResponse()

NexusTPI& tpi = NexusTPI::getInstance();

string capacity = "10";
string cmd = "{\"key\": \"performance\", \"data\": \"" + capacity + "\"}";

NexusTPICode res_request = tpi.request(cmd);

cout << "res_request:" << res_send << endl;

if(res_request == NexusTPICode::SUCCEED)
{
 cout << tpi.getResponse() << endl;
}

ACS RTDI User Guide
Chapter 2 ACS Nexus

Bi-Directional Communication between TP and RTDI Application

v2.3.0, July 2025 205

Table 2-24. NexusTPICode Code Descriptions

Code(int) Code(var) Definition

0 SUCCEED Communication succeeded

1 COMMON_ERROR Common Error (Errors that are not specifically defined)

2 TIMEOUT Communication time out

3

TARGET_INVALID Target is invalid

NOTE: This usually means that the target Application is
not defined in the AppDescriptor file or the
Application's configuration is illegal.

4 CONNECT_FAILED Unable to connect to the target Application

5 CERTIFICATE_ERROR Certificate related errors

6 LICENSE_INVALID License is invalid

 OneAPI
As the other endpoint of the bi-directional communication, the RTDI Application needs to use OneAPI library to receive
communication requests from the test program. The following sections provide information on how the test program
sends data to the RTDI Application, and how the test program can invoke a request to the RTDI Application.

 Sending Data from the Test Program to RTDI Application
Before beginning, make sure the following requirements have been met:

• Nexus v2.1.0 or higher is installed

• ACS Edge Server has been deployed

• DNS of HostController is correctly configured
(For example, /etc/hosts has the line: {edge_ip} advantestcell.local)

Procedure
1. Add NexusTPI lib into your device through SmarTest WorkCenter.

2. Import nexus.tpi.NexusTPI in test method code.

3. Set the correct target application name via NexusTPI.target(appName). This appName must be the same as
"containers/name" field in the AppDescriptor file.

4. Build data in string.

5. Send this data via NexusTPI.send().

ACS RTDI User Guide
Chapter 2 ACS Nexus
Bi-Directional Communication between TP and RTDI Application

206 v2.3.0, July 2025

Example 1: C++ version

import nexus.tpi.NexusTPI;

String appName = "yourApp";
String data = "yourdata";

int res; // result code

// send data to yourApp
res = NexusTPI.target(appName).send(data);

if (res == NexusTPI.SUCCEED) {
 // succeed
} else {
 // fail with code, do error handling
}

Example 2: Python version

class SampleMonitor(Monitor):
 def __init__(self):
 Monitor.__init__(self)

 # derive callback func for NexusTPI::send
 def consumeTPSend(self, tc, data):
 print(f"Received data from {tc.testerId}, length is {len(data)} ")

def main():
 myMonitor = SampleMonitor()
 Interface.registerMonitor(myMonitor)

 me = AppInfo()
 me.name = "sample"
 me.vendor = "adv"
 me.version = "1.1.0"

 NexusDataEnabled = True # whether to enable Nexus Data Streaming and Control
 TPServiceEnabled = True # whether to enable TPService for communication with NexusTPI
 res = Interface.connect(me, NexusDataEnabled, TPServiceEnabled)

 if res != 0:
 print(f"Connection request failed to initiate. code = {res}")
 sys.exit()

 print("Connection request initiated successfully.")

 signal.signal(signal.SIGINT, quit)
 signal.signal(signal.SIGTERM, quit)

 while True:
 signal.pause()

if __name__ == "__main__":
 main()

ACS RTDI User Guide
Chapter 2 ACS Nexus

Bi-Directional Communication between TP and RTDI Application

v2.3.0, July 2025 207

 Test Program Invoking Request to RTDI Application
Before beginning, make sure the following requirements have been met:

• Nexus v2.1.0 or higher is installed

• ACS Edge Server has been deployed

• DNS of HostController is correctly configured
(For example, /etc/hosts has the line: {edge_ip} advantestcell.local)

Procedure

1. Add NexusTPI lib into your device through SmarTest WorkCenter.

2. Import nexus.tpi.NexusTPI in test method code.

3. Set the correct target application name via NexusTPI.target(appName).

This appName must be the same as "containers/name" field in the AppDescriptor file.

4. Build your request data to JSON format string.

5. Initial request to target application with NexusTPI.request(data).

6. Get response with NexusTPI.getResonse() when the request API returns NexusTPI.SUCCEED.

Example

import nexus.tpi.NexusTPI;

String appName = "app1";
String req_cmd = "{\"key\" : \"command_for_test\"}";
int t_out = 1; // timeout 1 second
int res; // result code

// initial request to app1 with timeout 1 second
res = NexusTPI.target(appName).timeout(t_out).request(req_cmd);

if (res == NexusTPI.SUCCEED) {
 // succeed
 String response = NexusTPI.getResponse();
} else {
 // fail with code, do error handling
}

ACS RTDI User Guide
Chapter 2 ACS Nexus
Bi-Directional Communication between TP and RTDI Application

208 v2.3.0, July 2025

Example 2: OneAPI handle TPI request in application (Python version)

class SampleMonitor(Monitor):
 def __init__(self):
 Monitor.__init__(self)

 # derive callback func for NexusTPI::request
 def consumeTPRequest(self, tc, request):
 print(f"Received request from {tc.testerId}, command is {request}")
 jsonObj = json.loads(request)
 key = jsonObj["key"]
 response = "your response"
 return response

def main():
 myMonitor = SampleMonitor()
 Interface.registerMonitor(myMonitor)

 me = AppInfo()
 me.name = "sample"
 me.vendor = "adv"
 me.version = "1.1.0"

 NexusDataEnabled = True # whether to enable Nexus Data Streaming and Control
 TPServiceEnabled = True # whether to enable TPService for communication with NexusTPI
 res = Interface.connect(me, NexusDataEnabled, TPServiceEnabled)

 if res != 0:
 print(f"Connection request failed to initiate. code = {res}")
 sys.exit()

 print("Connection request initiated successfully.")

 signal.signal(signal.SIGINT, quit)
 signal.signal(signal.SIGTERM, quit)

 while True:
 signal.pause()

if __name__ == "__main__":
 main()

ACS RTDI User Guide
Chapter 2 ACS Nexus

Data Feed Forward

v2.3.0, July 2025 209

 Data Feed Forward
Data Feed Forward allows collection of test data from different test stages to be transmitted to other regions or OSAT's
ACS Unified Servers. It also enables retrieval of DFF data across ACS Unified Servers for machine learning to improve
production efficiency and quality. The diagram below illustrates the data feed forward concept.

Figure 2-14. Data Feed Forward

 Data Writing - NexusData
Data writing is implemented by ACS Nexus, which retrieves the raw data from Nexus directly, then forwards it to the
ACS Unified Server. Data writing is disabled by default. To enable data writing, the acs_nexus.ini configuration
must be modified as follows:

• [TestFloor_Server/Enabled] must be set to true.

• [TestFloor_Server/Brokers] must correspond to the ACS Unified Server configuration.

For more details, refer to the documentation for TestFloor_Server (see Table 2-13).

Any modifications to the configuration items will take effect after the next startup of ACS Nexus.

ACS RTDI User Guide
Chapter 2 ACS Nexus
Data Feed Forward

210 v2.3.0, July 2025

 Data Writing – Customer Data from the Application
OneAPI provides standardized interfaces for Edge applications and ACS Unified Server applications (Python 3.9 - 3.11)
to upload customer data to the ACS Unified Server (AUS). Follow the steps below to perform data writing:

Uploading DFF Data

1. Load and Register Schema

Load the data schema from a file. OneAPI will automatically register it with AUS.

2. Set Properties

Use the fluent interface provided by OneAPI to configure the properties for the next DFF data write.

3. Upload DFF Data

Upload the DFF data to the ACS Unified Server. OneAPI supports registering callback functions to receive
upload result notifications.

OneAPI Interfaces
OneAPI interfaces can be used to implement data writing functionality. For detailed information, refer to the relevant
sections in the OneAPI documentation. For Python interfaces, see section 2.4.3.9.

 Data Reading – By Application
Data reading is facilitated by OneAPI interfaces, allowing Edge applications and ACS Unified Server applications to
query DFF data from the ACS Unified Server and provide customized or formatted datasets to users.

Reading NexusData
The following are prerequisites for reading NexusData:

• A unique identification must be defined for each device across the entire lifecycle of the device.

• The unique identification of each device must be put into the STDF.PART_ID or STDF.PART_TXT field for each
insertion test.

• The application must able to get this "unique identification" (using customer's own mechanism) during testing,
then put this as a key to query specific DFF data for the specific device.

Dataset
The query result dataset contains all Nexus data except for FTR and STR records. Devices with FTR/STR failures will
not proceed to the next test insertion, making their data irrelevant for subsequent stages.

ACS RTDI User Guide
Chapter 2 ACS Nexus

Data Feed Forward

v2.3.0, July 2025 211

Data Structure in JSON Format
[{ “device_info”: […], “ptr”: […], “mpr”: […] }]

Refer to the tables below for the object descriptions.

Table 2-25. "device_info" JSON Object Description

Field Name Type Description Example
facility_id string Factory ID my_facility_id
family_id string Family ID my_family_id
floor_id string Floor ID my_floor_id
hard_bin integer Hard bin number 2
head_number integer Test head number 1
id UUID string Unique identifier xxxxxxxx-xxxx-xxxx-xxxx
job_name string Job name my_job_name
job_revision string Job revision my_job_revision
lot_id string Lot ID my_lot_id
number_test integer Number of tests 1
operator_name string Operator name my_operator_name
part_flag string Part flag my_part_flag
part_id string Part ID my_part_id
part_text string Part text my_part_text
part_type string Part type my_part_type
process_id string Process ID my_process_id
serial_number string Serial number my_serial_number
setup_timestamp timestamp Setup timestamp (µs) 1748940987950776
site_number integer Site number 0
soft_bin integer Soft bin number 3
sublot_id string Sub-lot ID my_sublot_id
test_step_code string Test step code my_test_step_code
test_temperature string Test temperature 25C
test_time integer Test duration 123456
test_type string Test type WAFER_TEST
testend_timestamp timestamp Test end timestamp (µs) 1748941987950776
tester_id string Tester ID my_tester_id
tester_type string Tester type my_tester_type
testeros_type string Tester OS type my_testeros_type
testeros_version string Tester OS version my_testeros_version
testprogram_name string Test program name my_testprogram_name
teststart_timestamp timestamp Test start timestamp (µs) 1748940987950776
timezone number Time zone +8
wafer_id string Wafer ID my_wafer_id
x_coord integer X coordinate 123
y_coord integer Y coordinate 456

ACS RTDI User Guide
Chapter 2 ACS Nexus
Data Feed Forward

212 v2.3.0, July 2025

Table 2-26. "ptr" JSON Object Description

Field Name Type Description Example
alarm_id string Alarm ID my_alarm_id
device_info_id string Unique device identifier xxxxxxxx-xxxx-xxxx-xxxx
head_number integer Test head number 1
high_limit float High limit 3.3
high_limit_format string High limit format ###.###
high_spec integer High spec 3000
highlimit_scaling integer High limit scaling -3
id UUID string Unique identifier xxxxxxxx-xxxx-xxxx-xxxx
lot_id string Lot ID lot_id
low_limit float Low limit 0.0
low_limit_format string Low limit format ###.###
low_spec integer Low spec 0
lowlimit_scaling integer Low limit scaling -3
measurement_name string Measurement name I_DD
optional_flag string Optional flag Y
param_flag string Parameter flag N
part_id string Part ID my_part_id
part_text string Part text my_part_text
result float Measurement result 1.23
result_format string Result format ###.###
result_scaling integer Result scaling -3
save_at timestamp Without time zone 1748940987950776
site_number integer Site number 0
test_flag string Test flag P
test_number integer Test number 1001
test_suite string Test suite name my_MainSuite
test_text string Test description my_Voltage measurement
units string Measurement units V
wafer_id string Wafer ID my_wafer_id
x_coord integer X coordinate 10
y_coord integer Y coordinate 20

ACS RTDI User Guide
Chapter 2 ACS Nexus

Data Feed Forward

v2.3.0, July 2025 213

Table 2-27. "mpr" JSON Object Description

Field Name Type Description Example
id UUID string Unique identifier xxxxxxxx-xxxx-xxxx-xxxx
device_info_id string Unique device identifier xxxxxxxx-xxxx-xxxx-xxxx
lot_id string Lot ID my_lot_id
wafer_id string Wafer ID my_wafer_id
part_id string Part ID my_part_id
x_coord integer X coordinate 100
y_coord integer Y coordinate 200
part_text string Part text my_part_text
test_number integer Test number 2001
site_number integer Site number 0
test_flag string Test flag F
rslt_cnt integer Result count 8
test_text string Test description Multi-site measurement
lo_limit float Low limit 0.0
hi_limit float High limit 5.0
units string Measurement units V
param_flag string Parameter flag Y
rtn_icnt integer Return index count 8
rtn_stat string Return status PASS
rtn_rslt Float [] Returned results [1.1, 1.2, 1.3, ..., 1.8]
alarm_id string Alarm ID alarm_id
opt_flag string Optional flag N
result_scaling integer Result scaling -3
lowlimit_scaling integer Low limit scaling -3
highlimit_scaling integer High limit scaling -3
start_in integer Start index 0
incr_in integer Index increment 1
rtn_indx string Return indices 0,1,2,3,4,5,6,7
units_in string Units of increment V
c_resfmt string Result format ###.###
c_llmfmt string Low limit format ###.###
c_hlmfmt string High limit format ###.###
lo_spec float Low spec 0.0
hi_spec float High spec 5.0
pin_name string [] Pin names ["PIN1", "PIN2", ...,

"PIN8"]
test_suite string Test suite name my_Suite1
measurement_name string Measurement name Vdd
save_at timestamp Without time zone 1748940987950776

ACS RTDI User Guide
Chapter 2 ACS Nexus
Data Feed Forward

214 v2.3.0, July 2025

Reading Customer Data
All data uploaded by users through the DFF-Data-Writing feature can be retrieved during data reading.

Data Reading Interfaces
Data queries are executed using OneAPI query interfaces. For details, refer to the relevant OneAPI sections.

For C++ interfaces, see sections 2.3.3.7 (QueryResponse) and 2.3.3.8 (DFFData)

For Python interfaces, see sections 2.4.3.7 (QueryResponse) and 2.4.3.8 (DFFData)

 Data Writing – Customer Data from Test Program
NexusTPI provides a standard interface enabling test programs to upload real-time data to the ACS Unified Server.

NOTE: Nexus v2.3.0 supports only Java version for SmarTest 8.

 Load and Register Schema
Register a schema template file in JSON format for data verification.

Code Example

import nexus.tpi.NexusTPI;

int result = NexusTPI.DFF.importSchema("./RTDI/schema.json");
if (result == NexusTPI.SUCCEED) {
 //Schema import successful"
}
if (result == NexusTPI.SCHEMA_LOAD_FAIL) {
 //Schema file failed to load, maybe it's not in JSON format
}
if (result == NexusTPI.SCHEMA_REGIST_FAIL) {
 //Schema registration failed, maybe server is down
}
if (result == NexusTPI.SCHEMA_SAME) {
 //Schema with same $id has been already registered by this Program
}

ACS RTDI User Guide
Chapter 2 ACS Nexus

Data Feed Forward

v2.3.0, July 2025 215

 Set Properties
Configure key-value pairs for subsequent data uploads. These key-value pairs will override the default values defined in
the schema template.

Code Example

import nexus.tpi.NexusTPI;

NexusTPI.DFF.set("ecid", String.format("DATA_IS_ECID_%d_x1_y1", 1))
 .set("filename","abcde.dff.json")
 .set("data_type", "DFF")
 .set("timestamp", "yyyy-MM-dd HH:mm:ss")
 .set("lot_id", "ABCDE.23")
 .set("program_name", "A5.A0.CP1.E.S.25C.1A.02")
 .set("site_num", 1)
 .set("test_stage", "FT")
 .set("schema_version", "1.0.0");

 Upload Data
Upload data asynchronously to the ACS Unified Server.

NOTE: Java test programs do not need to handle asynchronous processing when calling the NexusTPI layer. The
NexusTPI implementation handles asynchronous data transmission internally.

Code Example

import nexus.tpi.NexusTPI;

 int result = NexusTPI.DFF.upload("dffdata = xxxxxxx");
 if (result == NexusTPI.DFF_CONNECTED) {
 //Properties are valid, and start to upload, it doesn't mean upload completed
 }
 if(result == NexusTPI.DFF_CONNECT_FAIL) {
 //Failed to establish data-upload connection
 }
 if(result == NexusTPI.DFF_DATA_EMPTY) {
 //Data is empty
 }
 if(result == NexusTPI.DFF_PROPERTY_INVALID) {
 //Properties invalid to schema
 }

ACS RTDI User Guide
Chapter 2 ACS Nexus
Data Feed Forward

216 v2.3.0, July 2025

 Register User-Defined Callback Function
Register a user-defined callback function to receive upload results.

NOTE: There are three distinct methods to register a callback function.

Code Example

import nexus.tpi.NexusTPI;
import nexus.tpi.Callback;

static class DFF_Writing_Suite{
 public static void onUploadComplete(int result,
 String properties,
 String data) {
 }
}
NexusTPI.DFF.regUploadCallback(DFF_Writing_Suite::onUploadComplete);//Register
Callback Method 1

NexusTPI.DFF.regUploadCallback(new Callback() {
 @Override
 public void call(int result, String properties, String data) {
 //Register Callback Method 2
 }
});

NexusTPI.DFF.regUploadCallback((result0, properties, data) -> {
 //Register Callback Method 3
});

 Data Reading – by Test Program
NexusTPI provides a standard interface that allows the test program to query DFF data form the ACS Unified Server.

NOTE: Nexus v2.3.0 supports only Java version for Smartest8.

 Query Job-ID
Define custom query conditions to retrieve the Job ID.

Code Example

import nexus.tpi.NexusTPI;

NexusTPI.Result result = NexusTPI.DFF.query("query condition");
if (result.code == NexusTPI.SUCCEED) {
 String jobID = result.body[0];
} else {
 String errMsg = result.body[0];
}

ACS RTDI User Guide
Chapter 2 ACS Nexus

Data Feed Forward

v2.3.0, July 2025 217

 Get Job Result
Use the Job ID obtained in the previous step to fetch the corresponding job result.

Code Example

import nexus.tpi.NexusTPI;

NexusTPI.Result result = NexusTPI.DFF.getJobResult("jobID", "JSON or CSV");
if (result.code == NexusTPI.JOB_COMPLETED) {
 boolean hasError = !result.body[0].equals("");
 if (!hasError) {
 String dffdata = result.body[1];
 }
}
if (result.code == NexusTPI.JOB_FAILED) {//job fail}
if (result.code == NexusTPI.JOB_RUNNING) {//please wait job completed}

ACS RTDI User Guide
Chapter 2 ACS Nexus
Configurable Nexus Services

218 v2.3.0, July 2025

 Configurable Nexus Services
Nexus services and support can be enabled or disabled by modifying the acs_nexus.ini configuration file, which is
located at /opt/acs/nexus/conf/acs_nexus.ini.

The Nexus Services contents of the file are as follows:

[Nexus_Services]

All_Services=true

Monitoring_Service=true

Nexus_Services.All_Services

The default is true, which enables all services. Can optionally be set as false to disable all services.

Nexus_Services.Monitoring_Service

The default is true, which enables monitoring service. Can optionally be set as false to disable monitoring service.

ACS Nexus must be restarted for any changes to the acs_nexus.ini file to take effect. ACS Nexus should be stopped and
started manually.

 Nexus License Check Modes
Nexus supports different license check modes. The license check mode is defined in the Nexus configuration file
(acs_nexus.ini), located at /opt/acs/nexus/conf/acs_nexus.ini.

To change the license check mode, modify the [Mode] entry in the Nexus configuration file. See Table 2-28 below for
license mode details.

NOTE: If the license check mode is set to any value than 1 or 0, Nexus will not check the license and all Nexus features
will be disabled.

Table 2-28. License Check Modes

Mode Description Enabled Features Disabled Features

1 (default)

When the Smartest is ready, Nexus checks the
license. Once the license check succeeds, all
features will be enabled. When Smartest
terminates, Nexus will release license.

All features enabled None

0

When Smartest is ready, Nexus will NOT check
the license. License validation is triggered only
when TPI is called. The TPI will be enabled if the
license is valid, while other features remain
disabled. When Smartest terminates, Nexus will
release license.

• Custom Data Feed
Forword

• Bi-directional
communication

• Lifecycle management
for Edge APP (HC APP)

• Steaming Data
• Test Cell Control
• Standard Data Feed

Forward
• Fast API

ACS RTDI User Guide
Chapter 3 ACS Container Hub

ACS Container Hub Registration

v2.3.0, July 2025 219

3. ACS Container Hub
The ACS Container Hub is the artifact repository and distribution hub for Advantest Cloud workloads such as ACS Edge
Server container images. It is used to manage private and published App artifacts. The ACS Container Hub provides a
fully OCI-compliant Container Registry and implements Docker Registry HTTP API v2. It also offers a web GUI for
convenient management of artifact projects.

 ACS Container Hub Registration
This section provides step-by-step instructions for the registration process that must be completed for access to the ACS
Container Hub.

NOTE: The registration process should be completed prior to RTDI installation, as access to the ACS Container Hub is
required to complete the installation.

 Prerequisite
Prior to registering for ACS Container Hub access, an order must have been placed and signed between the customer and
Advantest. A customer representative must also be designated to server as the Entitlement Owner. This is the person who
will be granted access to an Advantest IT system (myAdvantest Entitlement System) where the order and the respective
ACS Container Hub Entitlement can be viewed and managed. The Entitlement Owner is responsible for granting end-
users access to the ACS Container Hub.

ACS RTDI User Guide
Chapter 3 ACS Container Hub
ACS Container Hub Registration

220 v2.3.0, July 2025

 Registering myAdvantest Accounts
The designated Entitlement Owner (and any additional users) must have an active myAdvantest account to log into the
ACS Container Hub (https://my.advantest.com). This process can be started during RTDI installation, but for a smoother
installation experience, it is best to begin registration prior to installation. To complete registration, the Entitlement
Owner must do the following:

1. Open a web browser and visit https://my.advantest.com.

2. Click on Sign Up. Enter the required email address, choose a password, agree with the myAdvantest Terms of
Use, then click on SIGN UP at the bottom.

Figure 3-1. Log In / Sign Up Dialog

https://my.advantest.com/

ACS RTDI User Guide
Chapter 3 ACS Container Hub

ACS Container Hub Registration

v2.3.0, July 2025 221

3. Follow and complete the registration process. The account is verified and activated within a few days, at which
point a welcome email is sent, as illustrated in the example below.

Figure 3-2. Welcome Email Example

4. After receiving the Welcome email, the Entitlement Owner must contact the Advantest project owner (via
email) to request service Entitlement.

The request should include the Entitlement Owners email address (highlighted) among an initial list of
additional user email addresses.

5. Within a few days, the Entitlement is created and activated. A notification email is then sent to the Entitlement
Owner, as shown in the example below.

Figure 3-3. Entitlement Email Example

ACS RTDI User Guide
Chapter 3 ACS Container Hub
ACS Container Hub Registration

222 v2.3.0, July 2025

6. After receiving the Entitlement activation email, the Entitlement Owner must visit
https://www.entitlement.advantest.com, log in, and navigate to the details page of the Active Entitlement for the
Container Hub application, as shown in the examples below.

Figure 3-4. Active Entitlement Details Page

https://www.entitlement.advantest.com/

ACS RTDI User Guide
Chapter 3 ACS Container Hub

ACS Container Hub Registration

v2.3.0, July 2025 223

7. On the Active Entitlement details page, the Entitlement Owner is already assigned to the Admin role. However,
the Entitlement Owner must click the Assign user to Entitlement button to assign any additional desired
myAdvantest users from the customer organization to the User role.

Figure 3-5. Assign User Button

8. Every user that was added to the Entitlement will receive another email notification that access to ACS
Container Hub has been granted. After receiving that email, the user can visit https://registry.advantest.com in a
web browser and log in with their myAdvantest credentials.

ACS RTDI User Guide
Chapter 3 ACS Container Hub
Connecting ACS Container Hub to an ACS Unified Server

224 v2.3.0, July 2025

 Connecting ACS Container Hub to an ACS Unified Server
For every RTDI installation, it is required to set up replication from the ACS Container Hub to a local Container Registry
running on the Unified Server. The replication ensures that all Container Hub contents that are supposed to run on RTDI
are made available on the local RTDI installation.

Replication requires a Client Credential with permissions to pull contents from all projects that shall be used with the
RTDI installation. The Client Credential must be created by the end customer and handed over to the Advantest Field
Service Engineer who is configuring the Container Registry for the ACS Unified Server during a new RTDI installation.

NOTE: This process must be completed prior to installing a Unified Server during a new RTDI installation.

 Creating Client Credential for Replication
 NOTE: As a prerequisite, you must have at least one project that contains container images and shall be replicated. See

Create a New Project for details on how to create new projects.

Credential Management Strategies
Depending on your technical and security requirements, you can choose between different strategies for managing Client
Credentials for replication.

Strategy Description Pros Cons

Single Credential

A single Client Credential
which is used for all
Unified Servers and RTDI
installations.

Easier to manage.

Only one credential needs to be
changed when new projects are
added.

If a credential gets
compromised,
deactivating/deleting it will
affect all RTDI installations.

Credential per
Unified Server

One Client Credential per
Unified Server and RTDI
installation.

Greater security control.

If a credential gets
compromised,
deactivating/deleting it will
affect only one RTDI installation.

Replicated projects can be
different per RTDI installation.

Higher management effort

New projects must be added to
each credential.

ACS RTDI User Guide
Chapter 3 ACS Container Hub

Connecting ACS Container Hub to an ACS Unified Server

v2.3.0, July 2025 225

Steps to Create Client Credential for Replication
NOTE: Make sure to update this client credential and add any new projects to it that are required by the RTDI

installation. Otherwise, project contents cannot be replicated, and ACS container starts will fail.

1. Choose a name that matches your management strategy and makes it easy to recognize the purpose of the
credential in the future. You may use the description field to leave additional information about how/where the
credential is used.

2. Make sure the credential does not expire, even if you have good reason to set an expiration date.

3. Make sure to add the system project that stores Application Descriptors with pull permissions.

4. Make sure to add any other project that stores container images which shall be replicated.

5. Click CREATE.

6. In the result popup, click the download icon to store the Client Credential as a JSON file. This JSON file must
be provided to the Advantest Field Service engineer that sets up the Unified Server for the targeted RTDI
installation.

Figure 3-6. Create Client Credential Dialog

1.

2.

3.

4.

5.

ACS RTDI User Guide
Chapter 3 ACS Container Hub
Connecting ACS Container Hub to an ACS Unified Server

226 v2.3.0, July 2025

Application Descriptor
The Application Descriptor system project is the project equal to the ID of your Container Hub Organization. You can
find your Organization ID in the Customer Portal user menu:

Figure 3-7. Application Descriptor - Customer Portal User Menu

https://hub.advantest.com/

ACS RTDI User Guide
Chapter 3 ACS Container Hub

ACS Container Hub User Interface

v2.3.0, July 2025 227

 ACS Container Hub User Interface
This section provides detailed information on how to navigate and use the ACS Container Hub UI.

 Log In to ACS Container Hub
To access the ACS Container Hub, login information is required. Prior to logging in, both of the following conditions
must be met:

• User must have ACS Container Hub service access
• User must be assigned to a valid entitlement (administrator or user)

If ACS Container Hub service access or entitlement assignment has not been acquired, contact your Advantest
representative. If both of the above conditions are satisfied, log in to the ACS Container Hub by opening a browser and
going to https://registry.advantest.com/.

In the ACS Container Hub Login screen, enter valid myAdvantest credentials and click LOG IN >.

Figure 3-8. ACS Container Hub Login

https://registry.advantest.com/

ACS RTDI User Guide
Chapter 3 ACS Container Hub
ACS Container Hub User Interface

228 v2.3.0, July 2025

After logging in, the ACS Container Hub homepage displays as shown below. The projects listed under "Your Projects"
will vary based on which projects users can access and which projects have been accessed recently.

Figure 3-9. ACS Container Hub Homepage

 Log in to Docker Command Line
To push and pull images to/from the ACS Container Hub, docker command line login is required. A docker wizard is
available on the ACS Container Hub homepage to facilitate easy copy of docker tag, build, login, and push/pull
commands. To log in to the docker command line, do the following:

1. Copy the login command using the copy icon, as shown below.

Figure 3-10. Copy Login Command

2. Open a command terminal on the Host workstation and paste the command copied in the previous step, then
press Enter. A password is requested, as shown below.

ACS RTDI User Guide
Chapter 3 ACS Container Hub

ACS Container Hub User Interface

v2.3.0, July 2025 229

3. Copy the docker password using the copy icon beside "Copy Docker secret." The docker password can
alternatively be copied by clicking the User Icon and clicking "Copy Docker secret."

Figure 3-11. Copy Password

4. In the command line, paste the password copied in previous step and press Enter, as shown in the example
below.

Copy icon

User icon

ACS RTDI User Guide
Chapter 3 ACS Container Hub
ACS Container Hub User Interface

230 v2.3.0, July 2025

 Docker Build and Push

1. To build the docker image with the desired tag, use the docker wizard and select the Project, Repository, and
Tag.

Figure 3-12. Building from Dockerfile

2. Copy the build command using the copy icon for the Build a Docker image from Docker file (as shown above),
then build the docker image by executing the copied build command.

3. After successful build, copy the docker push command from the wizard.

Figure 3-13. Copy Docker Push Command

4. Execute the command and it should push the image to the Container Hub.

ACS RTDI User Guide
Chapter 3 ACS Container Hub

ACS Container Hub User Interface

v2.3.0, July 2025 231

 Docker Pull

1. To pull the docker image with the desired tag, use the docker wizard and select the Project, Repository, and Tag.
Once selected, copy the docker pull command from the wizard.

Figure 3-14. Pulling from Dockerfile

2. Execute the command and it should pull the image from the ACS Container Hub.

ACS RTDI User Guide
Chapter 3 ACS Container Hub
ACS Container Hub User Interface

232 v2.3.0, July 2025

 Tag Existing Local Image
To push a locally stored image onto the ACS Container Hub for downstream distribution, the image must first be tagged
with its final location inside the Container Hub Container Registry. To do this, a new tag for the image must be set that
matches this full-qualified name (registry.advantest.com/project-name/repo-name:tag).

To tag the existing docker image, which is present on the Host workstation, use the docker wizard to do the following:

1. Select the option 'Tag an existing local image" and input the name of local image.

2. Copy the command using the copy icon for Tag an existing Docker image with a remote Image name.

3. Execute the command on docker command line and it will tag the local image with the correct host and tag.

Figure 3-15. Tagging a Local Image

1.

2.

ACS RTDI User Guide
Chapter 3 ACS Container Hub

ACS Container Hub User Interface

v2.3.0, July 2025 233

 Project Search

1. To search for a project, click on the link for either My Projects or See All Projects.

Figure 3-16. Project Search Options

2. Clicking any of the projects links will display a list of projects which you can access.

Figure 3-17. Project List

3. In the search field textbox, enter the project search criteria to filter the result(s).

Figure 3-18. Search Criteria and Result

ACS RTDI User Guide
Chapter 3 ACS Container Hub
ACS Container Hub User Interface

234 v2.3.0, July 2025

4. Click on any of the results to be redirected to the project details page. From this page, the docker wizard is also
available for convenience of copying docker commands.

Figure 3-19. Project Details

ACS RTDI User Guide
Chapter 3 ACS Container Hub

ACS Container Hub User Interface

v2.3.0, July 2025 235

 Create a New Project
NOTE: Only Organization Administrators (Entitlement Owners) can create projects. Regular users must contact an

Organization Administrators to request creating a new project.

1. To create a new project, first log in with Organization Administrator credentials.

2. Select either My Projects or See All Projects.

Figure 3-20. Navigate to Projects

3. Click the New Project button.

Figure 3-21. New Project Button

4. A Create New Project dialog opens. Enter the Project Name and Project Quota. Note that the Organization name
appears as a prefix to the Project Name.

Figure 3-22. Project Name and Quota Fields

5. Click the Create button to create the new project and be redirected to the details page of the newly created
project.

ACS RTDI User Guide
Chapter 3 ACS Container Hub
ACS Container Hub User Interface

236 v2.3.0, July 2025

 Change Project Storage Quota
NOTE: Only Organization Administrators (Entitlement Owners) can change the storage quota for a project.

Changing the quota helps to better balance the available Organization Storage Quota among projects. The quota value
must be positive and always (at least) the amount that the project currently consumes.

1. To change the project storage quota, first navigate into the target project.

2. Click on the More Menu, then select Change Storage Quota.

Figure 3-23. Change Storage Quota

3. In the Chang Storage Quota dialog, adjust the value as desired and click SAVE.

Figure 3-24. Change Storage Quota Dialog

ACS RTDI User Guide
Chapter 3 ACS Container Hub

ACS Container Hub User Interface

v2.3.0, July 2025 237

 Delete a Project
NOTE: Only Organization Administrators (Entitlement Owners) and Project Administrators can delete a project. Non-

empty projects cannot be deleted. All contained repositories must first be deleted before a project can be deleted.

1. Navigate into the project to be deleted.

2. Click on the More Menu, then select Delete.

Figure 3-25. Delete Project

3. A Delete Project dialog displays. Click YES to confirm the project deletion.

Figure 3-26. Delete Project Dialog

ACS RTDI User Guide
Chapter 3 ACS Container Hub
ACS Container Hub User Interface

238 v2.3.0, July 2025

 Project Repository and Artifacts
When you select a project selected and navigate to the project details, the details page displays the number of repositories
that the project contains, the number of members, the storage quota, and recent repositories that have been accessed.

Figure 3-27. Project Details Page

Click on Members to see all the users and user groups which have access to Projects.

NOTE: Limited Guest roles will not have access to this tab.

Figure 3-28. Members

ACS RTDI User Guide
Chapter 3 ACS Container Hub

ACS Container Hub User Interface

v2.3.0, July 2025 239

Click on Repositories to display the repository details, such as name of repository, number of pulls, number of artifacts,
and when the repository was updated.

Figure 3-29. Repositories

Click on one of the repositories to be redirected to the repository details page. Docker wizard is also available on this
page to conveniently copy the docker commands.

Figure 3-30. Repository Details

ACS RTDI User Guide
Chapter 3 ACS Container Hub
ACS Container Hub User Interface

240 v2.3.0, July 2025

Click on Artifacts to show artifacts/images details, such as Digest, size of the image, push time, pull time, tag, and image
URL.

Figure 3-31. Project Artifacts

ACS RTDI User Guide
Chapter 3 ACS Container Hub

ACS Container Hub User Interface

v2.3.0, July 2025 241

 Delete Artifact
NOTE: Only those with the role of Maintainer, Project Administrators, or Organization Administrators can delete

artifacts.

1. In the Artifacts tab of a repository, click on the trash bin icon next to the image that you want to delete. (See
section 3.3.10 for information on navigating to artifacts.)

Figure 3-32. Trash Bin Icon

2. A dialog displays to confirm the delete action. Select YES to confirm.

Figure 3-33. Confirm Artifact Delete

ACS RTDI User Guide
Chapter 3 ACS Container Hub
ACS Container Hub User Interface

242 v2.3.0, July 2025

 Delete Image Tag
NOTE: Only those with the role of Maintainer, Project Administrator, or Organization Administrator can delete an

image tag.

1. In the Artifacts tab of a repository, click on the arrow icon to the left of the image digest to expand the row.
(See section 3.3.10 for information on navigating to artifacts.)

Figure 3-34. Expand Image Row

2. Click on the delete button for the tag(s) you wish to delete.

Figure 3-35. Delete Tags

3. A dialog displays to confirm the delete action. Select YES to confirm.

ACS RTDI User Guide
Chapter 3 ACS Container Hub

ACS Container Hub User Interface

v2.3.0, July 2025 243

 Delete Repository
NOTE: Only those with the role of Maintainer or Project Administrator can delete repositories. Deleting a repository

will also delete all contained artifacts.

1. Navigate to the repository you want to delete. (See section 3.3.10 for information on navigating to repositories.)

2. In the repository, click the More menu (top-right) and select Delete.

Figure 3-36. Delete Repository

3. A confirmation dialog displays. Click on YES to confirm the delete action.

Figure 3-37. Confirm Repository Delete

ACS RTDI User Guide
Chapter 3 ACS Container Hub
ACS Container Hub User Interface

244 v2.3.0, July 2025

 Create Client Credentials
NOTE: Only Organization Administrators have permission to create Client Credentials.

For machine-to-machine communication between the ACS Container Hub and a Docker client, Client Credentials are
required. Follow the steps below to create and use Client Credentials:

1. Log in to the ACS Container Hub with Organization Administrator credentials, then click Credentials.

Figure 3-38. Click Credentials

2. The Client Credentials screen displays. Click the New Credentials button.

Figure 3-39. New Credentials Button

ACS RTDI User Guide
Chapter 3 ACS Container Hub

ACS Container Hub User Interface

v2.3.0, July 2025 245

3. A Create Credentials dialog displays. Enter a meaningful name and description for the client credential. Also
select an Expiry date, if desired (by default, credentials do not expire).

NOTE: An "access+[organization name]" prefix will automatically precede this name.

Figure 3-40. Project Name and Description

4. Click on Project textbox to display a drop-down list containing all the projects for the organization.

Figure 3-41. Project Drop-Down List

ACS RTDI User Guide
Chapter 3 ACS Container Hub
ACS Container Hub User Interface

246 v2.3.0, July 2025

5. Select the desired project from the drop-down list and select a permission level.

Figure 3-42. Project and Permission Selection

6. If desired, more than one project can be selected, as shown below. When finished selecting the project(s), click
CREATE.

Figure 3-43. Multiple Projects Selected

ACS RTDI User Guide
Chapter 3 ACS Container Hub

ACS Container Hub User Interface

v2.3.0, July 2025 247

7. Once the client credentials are created, the secret (password) of the new credential displays. Make sure to copy
the secret or download the JSON file and keep it safe. This is the only opportunity to view the secret details.
Click OK when ready to close this dialog.

Figure 3-44. Client Credential Secret

The newly-created client credentials are now displayed on the homepage. The JSON file naming convention is
"CredentialName.json" (e.g. client-credentials.json). The content of the file will be in the following format, where
"name" is the username for the docker login, and "secret" is the password:

{"name":"access+advtesting-client-credentials","secret":"a6qcHu5QTrELEzh0L2VWClHVgy7ObIkd"}

8. Open a command terminal on the Host workstation and log in using the username and password.

ACS RTDI User Guide
Chapter 3 ACS Container Hub
ACS Container Hub User Interface

248 v2.3.0, July 2025

 Update Client Credentials
NOTE: Only Organization Administrators have permission to update Client Credentials.

1. Log in to the ACS Container Hub with Organization Administrator credentials, then click Credentials.

Figure 3-45. Click Credentials

2. The Client Credentials screen displays. Click the Edit icon for the credential you want to update.

Figure 3-46. Update Credentials Icon

ACS RTDI User Guide
Chapter 3 ACS Container Hub

ACS Container Hub User Interface

v2.3.0, July 2025 249

3. The client credential opens in edit mode. With the exception of the Name field, every field can be edited in the
Edit Credential dialog. After editing is completed, click SAVE to confirm the changes and exit the dialog.

Figure 3-47. Edit Credential Dialog

ACS RTDI User Guide
Chapter 3 ACS Container Hub
ACS Container Hub User Interface

250 v2.3.0, July 2025

 Delete Client Credential
NOTE: Only Organization Administrators have permission to delete Client Credentials.

1. Log in with Organization Administrator credentials and click on Credentials.

Figure 3-48. Client Credentials

2. The Credentials screen displays. Click the Delete icon for the Client Credential you want to delete.

Figure 3-49. Delete Icon

3. A confirmation dialog displays. Click on YES to confirm the delete action.

Figure 3-50. Confirm Credential Delete

ACS RTDI User Guide
Chapter 3 ACS Container Hub

ACS Container Hub User Interface

v2.3.0, July 2025 251

 Reset Client Credential
NOTE: Only Organization Administrators have permission to reset Client Credentials. The Reset operation will change

the Client credential. Therefore, clients using this credential will stop working.

1. Login with Organization Administrator credentials and click on Credentials.

Figure 3-51. Client Credentials

2. The Credentials screen displays. Click the Reset icon for the Client Credential you want to reset.

Figure 3-52. Reset Icon

3. A confirmation dialog displays. Click on YES to confirm the reset action.

Figure 3-53. Confirm Credential Reset

ACS RTDI User Guide
Chapter 3 ACS Container Hub
ACS Container Hub User Interface

252 v2.3.0, July 2025

4. Upon successful reset, the credential password (secret) displays. Copy the secret or download the json file and
keep it safe. This is the only time the secret details will be displayed. Click OK once the secret is safely stored.

Figure 3-54. Credential Secret

ACS RTDI User Guide
Chapter 3 ACS Container Hub

ACS Container Hub User Interface

v2.3.0, July 2025 253

 Create 1:1 Application Descriptor
NOTE: Only Organization Administrators have permission to create Application Descriptors.

1. Log in with Organization Administrator credentials and click on Applications > 1:1 Application Descriptors.

Figure 3-55. 1:1 Application Descriptors

2. Click the NEW APPLICATION DESCRIPTOR button to open the Create Application Descriptor dialog.

Figure 3-56. NEW APPLICATION DESCRIPTOR Button

3. In the Application Descriptor dialog, enter the requested information (see Figure 3-57 for example image):

CAUTION: Make sure that your released Test Program and Application Descriptor make a perfect match.
Otherwise, it is technically possible to create application descriptors with different selectors that
lead to ambiguous matches during application descriptor selection in production. Take the
following example for 2 application descriptors:

Descriptor #1 Selector Descriptor #2 Selector

Device name: my_device Device name: my_device

Product family: my_product Product family: ANY

Test program name: TestProgram_1 Test program name: TestProgram_1

Test program revision: ANY Test program revision: v1

In the above scenario, the test program in production would emit the following attributes:

• Device name: my_device
• Product family: my_product
• Test program name: TestProgram_1
• Test program revision: v1

ACS RTDI User Guide
Chapter 3 ACS Container Hub
ACS Container Hub User Interface

254 v2.3.0, July 2025

In this example scenario, both descriptors match, because each selector matches the device name
and 2 other attributes. This is an error condition in production, and a proper descriptor selection
cannot be made. To avoid this type of condition, specify as many selector attributes as possible in
the application descriptor. If a descriptor shall be useable for multiple products and/or test
programs, make sure to not create an ambiguous situation as presented in the above example.

The Application Descriptor dialog consists of three sections (GENERAL, VOLUMES, and CONTAINERS)
where descriptor details should be entered. The fields of each section are described below.

GENERAL Tab

• In the Info section, enter the name of the Application Descriptor. This is a required attribute.

• In the Selector section, Device name is a required attribute. The other attributes in this section (Test program
name, Product family, and Test program revision) are optional.

o If the optional attributes are left empty, they will match any input value originating from the test
program during test operation. This is indicated as "ANY" in the dialog text fields. If a value is given,
the test program must generate the exact value during test operation to match this descriptor.

o Every selector attribute combination can only exist once among all application descriptors.

VOLUMES Tab

• In the Info section, enter the name of the Volume. This is a required attribute.

• In the Image section, enter the required Image details.

CONTAINERS Tab

• In the Info section, enter the name of the Container. This is a required attribute.

• In the Image section, enter the required Image details.

• For Volumes, add the associated volumes.

• For Info ACS Edge Requirements, use the checkbox to enable the GPU, or leave it blank to disable the
GPU.

• Exposed ports is an optional attribute. If entered, the same port number would be mapped from the host to
the container.

• Mapped ports is an optional attribute. Enter a port number to explicitly specify host-to-container port
mapping, along with the protocol. Enter this information in the format
host_port:container_port/protocol. For example, 8200:8200/tcp.

• Use the Monitoring checkbox to enable or disable monitoring for a container. If enabled, enter the port and
path for scraping metrics. You can also indicate the scrape interval (time interval between consecutive
scrapes) and the scrape timeout for a particular scrape.
NOTE: If monitoring metrics are implemented into your Application and deviate from the standard

monitoring endpoint, you can optionally override the port and path for metric scraping. ACS Nexus
will consider these overridden settings in production.

• Environment variables can optionally be specified if you need to configure the application container during
runtime. These are passed into the container as defined in this section.

ACS RTDI User Guide
Chapter 3 ACS Container Hub

ACS Container Hub User Interface

v2.3.0, July 2025 255

4. When finished entering the Application Descriptor information, click CREATE in the bottom-right corner of
the dialog.

Figure 3-57. Create Application Descriptor Dialog

ACS RTDI User Guide
Chapter 3 ACS Container Hub
ACS Container Hub User Interface

256 v2.3.0, July 2025

5. To see the Application Descriptor details, click on the arrow button to the left of the Application Descriptor
name.

Figure 3-58. Application Descriptor Details

ACS RTDI User Guide
Chapter 3 ACS Container Hub

ACS Container Hub User Interface

v2.3.0, July 2025 257

 Update 1:1 Application Descriptor
NOTE: Only Organization Administrators have permission to update Application Descriptors.

1. Log in with Organization Administrator credentials and click on Applications > 1:1 Application Descriptors.

Figure 3-59. 1:1 Application Descriptors

2. Click the Edit icon that is associated with the desired Application Descriptor.

Figure 3-60. Application Descriptor Edit Button

ACS RTDI User Guide
Chapter 3 ACS Container Hub
ACS Container Hub User Interface

258 v2.3.0, July 2025

3. Update the desired details and click SAVE to save the edits when completed.

Figure 3-61. Save Application Descriptor Changes

ACS RTDI User Guide
Chapter 3 ACS Container Hub

ACS Container Hub User Interface

v2.3.0, July 2025 259

 Delete 1:1 Application Descriptor
NOTE: Only Organization Administrators have permission to create Application Descriptors.

1. Log in with Organization Administrator credentials and click on Applications > 1:1 Application Descriptors.

Figure 3-62. 1:1 Application Descriptors

2. Click the Delete icon that is associated with the Application Descriptor.

Figure 3-63. Application Descriptor Delete Icon

3. A confirmation dialog displays. Click Yes to confirm the delete action.

Figure 3-64. Confirm Application Descriptor Delete

ACS RTDI User Guide
Chapter 3 ACS Container Hub
ACS Container Hub User Interface

260 v2.3.0, July 2025

 Multi-User Permissions for Managing App Descriptors or Organization Project
Organization Administrators have the capability to provide multi-user permissions that allow Service users to manage
Application Descriptors or an Organization Project. Only one of the following roles may be assigned:

• Developer
Provides permissions for user to access and manage Application Descriptors

• Project Administrator
Provides permissions for user to access and manage the Organization Project

1. Log in with Organization Administrator user credentials, then navigate to the Organization Project.

Figure 3-65. Navigate to Organization Project

2. Click on the Members tab and then click the Add Members button.

Figure 3-66. Members Tab

3. In the Add Members To Project dialog, select a user from the User dropdown.

Figure 3-67. Select a User

ACS RTDI User Guide
Chapter 3 ACS Container Hub

ACS Container Hub User Interface

v2.3.0, July 2025 261

4. To provide Service users with permissions to manage Application Descriptors, select Developer from the Role
dropdown and click the Add Members button.

To give Service users Project Administrator privilege for the Organization Project, select Admin from the Role
dropdown and click the Add Members button.

Figure 3-68. Assign Service User Role

5. Upon successful completion, the newly added Service user will be visible under the Members tab. To revoke
granted permission for any user, click the Delete icon. To change the role for a user, select the appropriate
option from the Role dropdown.

Figure 3-69. Newly Added Service User and Delete Icon

ACS RTDI User Guide
Chapter 3 ACS Container Hub
ACS Container Hub User Interface

262 v2.3.0, July 2025

 Using Multi-User Permissions
For Service users that have been granted permissions to manage Application Descriptors or manage the Organization
Project (see page 260), this section provides guidance on how Service users can get started in the newly assigned role.

Developer (Application Descriptors)

1. Log in to the Container Hub with user credentials.

2. On successful login, click the Applications tab to display the 1:1 APPLICATION DESCRIPTORS and 1:N
APPLICATION DESCRIPTORS.

Figure 3-70. Application Descriptors

3. See the following sections for instructions on managing Application Descriptors:

• Create 1:1 Application Descriptor

• Update 1:1 Application Descriptor

• Delete 1:1 Application Descriptor

• Support for 1:N Applications

• Viewing 1:N Application Status

Project Admin (Organization Project)
Container Hub users with Project Admin privileges can assign other users to the role of Developer or Project Admin, as
described in Multi-user Permissions for Application Descriptors or Organization Project.

ACS RTDI User Guide
Chapter 3 ACS Container Hub

ACS Container Hub User Interface

v2.3.0, July 2025 263

 Support for 1:N Applications
The 1:N Application Descriptor displays information about applications running on the Unified Server. All information is
collected automatically, so there is no need for any user input.

Click on the 1:N Application Descriptor tab to display a table similar to Figure 3-71 below.

NOTE: The information shown is read-only. No editing is required or allowed. The delete icon (in the Actions column)
is only active if all instances of the application are stopped (see the "Actions" column in Viewing 1:N
Application Status).

Figure 3-71. 1:N Application Descriptors

ACS RTDI User Guide
Chapter 3 ACS Container Hub
ACS Container Hub User Interface

264 v2.3.0, July 2025

 Viewing 1:N Application Status
To display status information for the 1:N application running on different servers, click the server icon (in the Actions
column) for the application descriptor. A table will display with information specific to that application, as show below.

NOTE: The delete icon is only active when all instances of the application are stopped.

Figure 3-72. 1:N Application Status

The 1:N application status information is displayed in a 6-column table. Each row in the table represents one single
instance running in a specific Unified Server.

• Unified Server ID
The identifier of the Unified Server running an instance of the application.

• Running Since
The date when the application ran for the first time.

• Last Modified
The date when the application was last deployed.

• Status Update Time
The date when the status of the application was last modified

• Status
The status of the application, which will either be RUNNING or STOPPED.

• Actions
The actions to be performed on the application. There are two possible actions that can be performed, either
START or STOP. If the current status of the application is RUNNING, a "STOP" action can be performed. If the
current status of the application is STOPPED, a "START" action can be performed. When executing an action, a
confirmation dialog will display to confirm the execution action. Select YES to confirm the action, or NO to
cancel execution.

ACS RTDI User Guide
Chapter 3 ACS Container Hub

ACS Container Hub User Interface

v2.3.0, July 2025 265

 Viewing, Creating, and Editing 1:N Application Descriptors
To view, create and edit 1:N Application Descriptors, log in with Organization Administrator credentials and click on
Applications > 1:N Application Descriptors.

Creating 1:N Application Descriptors
To create a new 1:N Application Descriptor, click the NEW APPLICATION DESCRIPTOR button. Refer to Create
1:1 Application Descriptor for more information.

Figure 3-73. New Application Descriptor Button

Viewing 1:N Application Descriptor Details
To view expanded details for 1:N Application Descriptors, click the expand chevron (downward arrow at the far left of
the descriptor) as indicated in the figure below. Application Descriptor details then display as illustrated in Figure 3-75.

Figure 3-74. Expand Chevron

ACS RTDI User Guide
Chapter 3 ACS Container Hub
ACS Container Hub User Interface

266 v2.3.0, July 2025

Figure 3-75. Application Descriptor Expanded View

Updating 1:N Application Descriptors

To update an existing 1:N Application Descriptor, click the edit icon at the right of the Application Descriptor to open
the Edit Application Descriptor dialog.

Figure 3-76. Edit Application Descriptor Dialog

ACS RTDI User Guide
Chapter 3 ACS Container Hub

ACS Container Hub User Interface

v2.3.0, July 2025 267

 Test Applications for 1:N Application Descriptors
The Test Application feature enables users to send HTTP requests directly to docker applications running in a specific
server. This can be useful for verifying application endpoints, debugging, or interacting with your service.

Availability Requirements
The Test App feature is only available if both of the following conditions are met:

• The application is running on the server

• The application exposes ports that are accessible via HTTP

Accessing the Test App User Interface
To open the HTTP requests UI,steps below.

1. Navigate to the Application Descriptors menu

2. Select the 1:N Application Descriptors tab

3. Click the Sites icon to view detailed information about the application status. If the application is running and
exposes public ports, the HTTP button will appear next to the Stop Application button.

Figure 3-77. Sites Icon and HTTP Button

4. Click the HTTP button to open the Test App UI (Figure 3-78).

ACS RTDI User Guide
Chapter 3 ACS Container Hub
ACS Container Hub User Interface

268 v2.3.0, July 2025

Using the Test App UI
At the top of the UI, users can configure and send an HTTP request. The components are described below.

Figure 3-78. Test App UI – HTTP Request Configuration

1 HTTP Method

Select an HTTP method from the dropdown. Selection options include GET, POST, PUT, DELETE, and PATCH.

2 Endpoint Configuration

• Hostname: This is the name of the server where the app is running. It is pre-filled and read-only.

• Container-Port Path: The first part of the path is auto-generated based on the selected container and port in the
format:

 <container-name>-<port>

• Additional Path: A text input where users can add custom path segments after the container-port string.

3 Container and Port Selection

If multiple containers are available, a Container dropdown will be shown.

If a container exposes multiple ports, a Port dropdown will also be available.

4 Action Selection

A dropdown to choose one of the following actions:

Send: Sends the HTTP request

Clear Form: Resets the form to its initial state

5 RUN button

 Executes the selected action (Send or Clear Form).

ACS RTDI User Guide
Chapter 3 ACS Container Hub

ACS Container Hub User Interface

v2.3.0, July 2025 269

Configuring HTTP Request Details
Below the top controls, you’ll find a set of tabs to configure various aspects of the HTTP request. These options allow
you to fully customize the HTTP request to match the behavior and requirements of your application.

Figure 3-79. Test App UI – Configuring HTTP Request Details

• Params: Add query parameters to be included in the request URL. You can enter multiple Key-Value pairs.
Additional rows can be added as needed.

• Authorization: Configure authentication credentials:

o No Auth
o Basic Auth (username and password)
o Token (e.g., Bearer token)

• Headers: Define custom HTTP headers to include in the request. You can enter multiple Key-Value pairs.

• Body: Enter raw data to be sent in the request body, typically in JSON format (available for methods like POST,
PUT, PATCH).

ACS RTDI User Guide
Chapter 3 ACS Container Hub
ACS Container Hub User Interface

270 v2.3.0, July 2025

CLI Command
This area displays the command in CLI format. As the user inserts the values on the forms at the top of the screen, this
area will be updated automatically

The command can be copied using the COPY button. A command can also be pasted in this field using the PASTE
button. When a valid command is pasted in this field, the values in the upper section of the Test App UI will be updated
based on the values from the command.

A command can also be directly entered into this field. As with the PASTE button, the values in the upper section of the
Test App UI will be updated based on the values directly entered in this field, after a 2-second delay.

Figure 3-80. Test App UI – CLI Command

Example Command

./apptest-cli test-application --request PUT --url "http://us-sjc-lab-advantest-cluster-
01/demoa10-8000/test" --header "Content-Type: JavaScript" --data '{"name": "PutTest"}'

Below is a description of the above example command:

./apptest-cli The entry point. This is the command-line interface (CLI) tool script or executable file you're
invoking.

test-application A subcommand or action the CLI tool will perform. In this case, it likely triggers a test run for an
application endpoint.

--request PUT Specifies the HTTP request method to use. Here, it’s PUT, which is generally used to update a
resource.

--url Error! Hyperlink reference not valid. The target URL to which the request will be sent. This is the
endpoint of the application under test.

--header "Content-Type: JavaScript" Adds a custom HTTP header to the request. In this example, it sets
Content-Type to JavaScript. This is likely a placeholder—typically you'd use application/json.

--data '{"name": "PutTest"}' The body of the HTTP request. This sends a JSON payload, commonly used in
PUT and POST requests. Here it updates the name field with the value "PutTest"

http://us-sjc-lab-advantest-cluster-01/demoa10-8000/test%22
http://us-sjc-lab-advantest-cluster-01/demoa10-8000/test%22

ACS RTDI User Guide
Chapter 3 ACS Container Hub

ACS Container Hub User Interface

v2.3.0, July 2025 271

Response
After clicking the RUN button (at the top-right of the Test App UI) and a response is received from the API, all the
following information will be displayed in this area:

• The response status code

• The duration the application took to process the request (in milliseconds)

• The body of the response

Figure 3-81. Test App UI – Response

ACS RTDI User Guide
Chapter 3 ACS Container Hub
ACS Container Hub User Interface

272 v2.3.0, July 2025

 Monitoring – Alert Subscriptions
The Monitoring tab allows you to view and configure Alert Subscriptions. From the Alert Subscriptions section, you can
view a list of available sites for which alerts are configured, as well view and modify the subscription status for
individual alerts within each respective site.

Figure 3-82. Alert Subscriptions

Click on a site to expand the view and see the individual alert details for that site.

Figure 3-83. Alert Subscriptions – Expanded Site

ACS RTDI User Guide
Chapter 3 ACS Container Hub

ACS Container Hub User Interface

v2.3.0, July 2025 273

In the site expanded view, you can subscribe to (or unsubscribe from) specific alerts by clicking the checkbox
corresponding to that alert. Upon clicking the checkbox, a confirmation dialog displays, from which you can confirm or
decline the action.

Figure 3-84. Confirmation Dialog

The expanded details for a site includes the following information:

• Subscribed
This shows the subscription status for the alert. A check mark in the checkbox indicates that the user is subscribed
to this alert. If unchecked, the user is not subscribed.

NOTE: If a user is subscribed to all the alerts in the site's expanded view, the Subscribed checkbox for that site is
enabled, as shown in the figure below. If a user is unsubscribed to any one of the alerts for that site, the
Subscribed checkbox for that site is disabled.

For all subscribed alerts, users will receive an email from Advantest Alerts (alerts@advantest.com) that includes
information about the alert event, as shown in . The level provided event information (Summary, Description,
and Details) in the email varies for each alert.

• Summary
Provides a summary of the alert. Hover over the information icon at the right of the summary to display a full
description of the alert.

• Interval
Indicates the time interval for the alert.

ACS RTDI User Guide
Chapter 3 ACS Container Hub
ACS Container Hub User Interface

274 v2.3.0, July 2025

• History
Expands the alert section to display the history for the alert, as illustrated in Figure 3-85.

Figure 3-85. Alert History

The Event detail provides information about the replicated image and other replication information for that alert.
This information provided varies for each alert.

By default, the most current information is displayed. However, the From and to date filter fields can be used to
display historical information available within the selected date range. After selecting a date range, click the refresh
button (to the right of the date fields) to see the alert events filtered for the specified date range.

ACS RTDI User Guide
Chapter 3 ACS Container Hub

ACS Container Hub User Interface

v2.3.0, July 2025 275

 Replication
Replication allows the user to replicate the application descriptor and related image across multiple sites. To use the
Replication button, navigate to Applications menu and select 1:N Application Descriptors.

Figure 3-86. Replication Button

Click the replication button to display a table that lists sites where replication can be enabled or disabled. As shown in,
the replication table displays:

• Enable / Disable checkbox for enabling and disabling replication
• Last Action column informing the result of the last enable / disable action
• Last Replication Start Time column informing when the last replication has started
• Last Replication End Time column informing when the last replication has finished
• Last Replication Status informing the status of the last replication.

NOTE: The Last Replication Start Time, End Time, and Status columns will only be visible when replication is enabled
for the site.

ACS RTDI User Guide
Chapter 3 ACS Container Hub
ACS Container Hub User Interface

276 v2.3.0, July 2025

Figure 3-87. Replication Table

Enabling and Disabling Replication
Use the Enabled checkbox to enable or disable replication. Upon enabling replication, a confirmation message displays to
confirm the action. If confirmed, the Container Hub will proceed with the replication process and the Last Action column
will indicate "Enable In Progress" until replication has completed.

When the replication process completes (or fails), the Last Action column displays the results of the action. To get new
updates, click the Refresh button.

NOTE: When enabling replication for a site, note the following:

• While replication is in process, the Enable checkbox cannot be toggled until the process has completed.

• When using replication for a site, multiple descriptors should not be setup using the same image.

• When replication is enabled on an application descriptor, it must be disabled to choose a different image.

• The replication feature currently applies only to the first container and will not work for the other containers.

• If enable/disable replication fails, please contact the Advantest support team.

ACS RTDI User Guide
Chapter 4 ACS Edge Server
ACS Edge Server Operation

v2.3.0, July 2025 277

4. ACS Edge Server
The ACS Edge Server is a high-performance and highly secure edge compute and analytics server that, when integrated
into an existing test cell, enables ultra-fast algorithmic (AI, machine learning, and statistical) decision making.

Once integrated into an existing test cell, the main function of the ACS Edge Server is to act as a repository for container
images that are pulled from the ACS Unified Server. Container images are pulled into the ACS Edge Server using APIs
provided by Advantest. For information on the provided APIs, see C++ Client API Reference.

 ACS Edge Server Operation

 Operation Overview
The ACS Edge Server is always on and connected to the 93K Host Controller’s 10Gbps 4-port NIC via Cat6a Ethernet
cable. The client SDK is integrated into the customers' test program to communicate with the ACS Edge Server via API
calls. The client SDK is integrated into the ACS Nexus for communicating with the ACS Edge Server Containerized
ML/HPC workloads (Apps), which are loaded onto the Edge Server via Test Program/Nexus during runtime.

NOTE 1: Based on customer preferences, the ACS Edge Server may or may not have pre-loaded container images.

NOTE 2: Container images can be pulled from local Unified Server (the on-premise Mirror Registry) or directly from
the ACS Container Hub (external network).

The figure below illustrates the data/communication flow for the ACS Edge server within the RTDI environment.

Figure 4-1. ACS Edge Server Data/Communication Flow

ACS RTDI User Guide
Chapter 4 ACS Edge Server
ACS Edge Server Operation

278 v2.3.0, July 2025

 Monitoring the ACS Edge Server
The Local Monitoring Tool (LMT) is a server monitoring application that is installed on each Host Workstation. As
shown in Figure 4-2, the LMT provides visual, real-time, and continuous monitoring of a server's critical sub-
components, including:

• NIC hardware
• NIC connection speed
• Edge Server IP address
• Edge Server connectivity
• iLO IP address
• Unified Server connectivity

Figure 4-2. Local Monitoring Tool (LMT)

ACS RTDI User Guide
Chapter 4 ACS Edge Server
ACS Edge Server Operation

v2.3.0, July 2025 279

The LMT will automatically start when logging into the 93K Host Workstation. To manually start the LMT, access the
RHEL OS start menu and navigate to Application  Advantest V93000  LMT.

Figure 4-3. LMT Manual Start

ACS RTDI User Guide
Chapter 4 ACS Edge Server
ACS Edge Server Features

280 v2.3.0, July 2025

 ACS Edge Server Features

 Security
• Server is physically locked in a mini-rack

• Server access is password protected

• SSH, display, and USB are disabled

• Secure/encrypted connection using mTLS 1.2+ / https

• Advantest PKI, security certificates refresh

• Application authorization using signed test program manifest

• Encryption of container image contents

• Latest security updates for BIOS, iLO, Ubuntu OS, and app packages

• Customer Application and Data stored in non-persistent storage

Figure 4-4. ACS Edge Security Features

 Accessibility
The ACS Edge Server is controlled and operated by the Edge client SDK or ACS Nexus. Access to the Edge Server is
allowed only through the client SDC, ACS Nexus, and Advantest (ADV) support tools.

ACS RTDI User Guide
Chapter 4 ACS Edge Server

ACS Edge Server Features

v2.3.0, July 2025 281

 Functionality
Functionality attributes of the ACS Edge Server include:

• Dedicated high performance compute solution for test operations
o Offload in-line inferencing, computing, and machine learning (ML) capabilities or other compute-intensive

applications from the Host Controller to the ACS Edge Server
 Pull container images from the on-premise ACS Unified Server or the external ACS Container Hub.
 Run application as a Docker image

o Increase overall equipment efficiency (OEE) of the RTDI system by freeing up the Host Controller to be
devoted to test execution control

o AI Hardware Accelerator Compatible
• Open Container Initiative (OCI) Architecture for robust and reliable production deployment
• Ultra-Low latency (<10ms)

o Operate near real-time on data generated by tests in the test program
• Service APIs for on-field server configurations
• Collect Edge Server system metrics, system logs, and customer application logs to share with the ACS Unified Server

for monitoring capability. Refer to Table 4-1 and Table 4-2 for list of each data type and corresponding description.

Table 4-1. Edge Server Metrics

Name Description

edge_server_serverapi_up Server API is up and running. 0 for a down or 1 for up.

edge_server_serviceAPI_up Service API is up and running. 0 for a down or 1 for up.

traefik_entrypoint_request_duration_seconds Request processing duration histogram on an endpoint.

traefik_entrypoint_requests_tls_total The total count of HTTPS requests handled by an entry
point.

traefik_service_open_connections The amount of open connections that exist on a service,
partitioned by method and protocol.

traefik_config_reloads_total Configuration reloads.

traefik_config_reloads_failure_total Configuration failure reloads.

traefik_config_last_reload_failure The last configuration reload failure.

redis_up Shard is up and running.

redis_used_memory Memory used by shard.

edge_server_memory_usage The CPU utilization in percentage.

GPU Metrics All GPU metrics

ACS RTDI User Guide
Chapter 4 ACS Edge Server
ACS Edge Server Features

282 v2.3.0, July 2025

Table 4-2. Edge Server Events

Name Description

Unauthorized Access Unauthorized clients tried to communicate with the Edge Server.

Unified Server Unreachable Unable to reach the Unified Server

Image Download The Edge Server downloads an image.

Image Delete The Edge Server deletes an image.

Container Create The Edge Server creates a container with a specific configuration.

Container Delete Edge Server deletes a container.

Application failed to start Application failed to start.

Volume Create The Edge Server creates a volume.

MirrorRegistry Config Add container registry URL/hostname into the Edge Server.

App Auth Config Enable/disable Application Authorization in the Edge Server.

Trusted CA Add Add customer trust CA into the Edge Server.

Trust CA Delete Remove customer trust CA from the Edge Server.

Edge Server Logs
Logs are collected to share with the Unified Server from the following Edge Server components

• Application
• Traefik
• Redis
• Server API
• Service API

For more information on the attributes collected for each data type (logs, results, metrics, events), refer to section 5.3.1.

ACS RTDI User Guide
Chapter 4 ACS Edge Server

ACS Edge Server Features

v2.3.0, July 2025 283

 Redundancy
Edge redundancy ensures continuous container deployment on the ACS Unified Server in case of ACS Edge Server
failure. Redundancy features include:

• Automatic failover

o If the Edge Server is unreachable for a test, the application container can be started on the Unified Server
instead with the application descriptor specified, and all traffic will be redirected to the Unified Server
hosted application.

o The Edge client SDK will return error code 7 (ACSE_COULDNT_CONNECT) which triggers an
automatic failover.

• Automatic switchover

o If the ACS Edge Server is reachable again, the application container can be resumed on the Edge server.
The cleanup process will automatically remove deployed containers and used volumes on the Unified
Server and switch it back to the Edge Server.

• Tester identification

o Only allowed testers can use server API and deploy containers on the Unified Server. Testers can be
registered with Management CLI and registry admin API.

• Multi-tester support

o Default capacity for the number of testers that can deploy containers on the Unified Server is set to 1. The
'Capacity' can be replaced with Management CLI.

• Smartest7 client SDK (C++) support to communicate with containers deployed on the Unified Server.

o Traefik routing

 string image_name = "acsev2-test-multiport-test";

string tag = "latest";
ACSEdgeConn& conn = ACSEdgeConn::getInstance();
conn.setIp("10.120.111.54") //set Unified server IP address
ContainerConfig contConfig;
ports.push_back("8000");
ports.push_back("8001");
ports.push_back("8002");
// configure the container by adding tester hostname and expose container
port
contConfig.setOption("tester_id","tester1").setOption("ports",ports)
ACSEDGEcode status_code = conn.imagePull(image_name, tag,response);
status_code =
conn.containerCreateStart(image_name,"multiporttest",contConfig,
response);

 Server API on the Unified Server will create a traefik routing rule (HTTP/HTTPS) dynamically, based
on its container name (or hostname) and port. By default, if the request contains a single port, the
endpoint will be unifiedserver.local/<container_name>/ regardless of which port is used
by the customer app inside the container.

 If there are multiple ports used by the customer app inside the container, the endpoint will be
unifiedserver.local/<container_name>-<port>/.

ACS RTDI User Guide
Chapter 4 ACS Edge Server
ACS Edge Server Features

284 v2.3.0, July 2025

o Host port mapping

 string image_name = "acsev2-test-multiport-test";
string tag = "latest";
string publish_port1 = "8001:8003/tcp"; //<container_port>:<host_port>
ACSEdgeConn& conn = ACSEdgeConn::getInstance();
conn.setIp("10.120.111.54") //set Unified server IP address
ContainerConfig contConfig;
vector<string> ports;
ports.push_back(publish_port1);
// configure the container by adding tester_id and expose container port
contConfig.setOption("tester_id","tester1").setOption("publish-ports",
ports);
ACSEDGEcode status_code = conn.imagePull(image_name, tag,response);
status_code = conn.containerCreateStart(image_name,"multiport-
test",contConfig,response);

 Direct mapping container’s port to host’s port provides client ability to use custom protocol in
addition to http/https which is only allowed with traefik routing method.

 Available ports on the Unified Server: 8000 to 8010. Note that the example above is mapping the host
port (8001) with container port (8003/tcp).

NOTE: When the application is started on the Unified Server, the state of the application on the Edge
Server is not migrated to the Unified Server.

ACS RTDI User Guide
Chapter 4 ACS Edge Server

ACS Edge Server Features

v2.3.0, July 2025 285

 Remote Service Upgrade
By utilizing the ACS Unified Server harbor, ACS Container Hub, and Remote Activities UI, the internal services
(containers) running on the Edge Server and manifest file can be updated every 24 hours manually by enabling remote
service upgrade.

Currently, all services (container images, Helm charts) are grouped and released under a single ISO version (for example,
3.3.0). When the ISO version changes, all related services (containers, deployments, images, configs) are upgraded or
synchronized at once, based on that version. This means that individual service images cannot be upgraded independently
on the ACS Edge server. All services must be upgraded together by switching to the desired ISO version.

The following services can be upgraded:

• serverapi
• serviceapi
• securityapi
• nexus-broker

Follow the procedure below to perform remote service upgrade:

1. Use the ACT tool to enable remote-upgrade. This will bootstrap the flux manifests file for the 4 services listed
above.

2. Obtain a new ACS Edge ISO version from the ACS team.

3. Replicate images and manifests in unifiedserver harbor from containerhub.

4. Open a browser and go to:

https://unifiedserver.ui.local/harbor-ui/

5. Click the replication menu on left sidebar and look for:

• adv-acs-edge-images (and click the Replicate button)

• adv-acs-edge-manifests (and click the Replicate button)

6. Once replication is completed successfully, go to the remote activities UI and click terminal on the top menu
bar.

7. Select the unifiedserver ID and Edge server ID from the side bar menu. In the terminal, enter the following
command for the service upgrade:

 /opt/acsev2-server/scripts/patch_flux_manifests.sh {tag}

8. Enter the following command to verify the update:

 kubectl -n default get helmrelease

ACS RTDI User Guide
Chapter 4 ACS Edge Server
ACS Edge Server Specifications

286 v2.3.0, July 2025

 ACS Edge Server Specifications

Table 4-3. Hardware Specifications

Processor Intel Xenon CPU 3.0 GHz

Memory 128 GB

Storage 480 GB x2

Power 800W

Ethernet 10 Gigabit Ethernet Port x2

Operating System Ubuntu 22.04 LTS

Table 4-4. Z4G4 Customer Workstation Slot Configuration with X710-T4 NIC

Slot Type Customer Workstation Port Configuration

1 PCIe 3 x 16

2 PCIe 3 x 4 PCH

3 PCIe 3 x 16

4 PCIe 3 x 4 PCH

5 PCIe 3 x 8 Intel X710-T4

Table 4-5. Z640 Customer Workstation Slot Configuration with X710-T4 NIC

Slot Type Customer Workstation Port Configuration

1 PCI Express (Gen2) x4 (1)

2 PCI Express (Gen3) x16

3 PCI Express (Gen2) x8 (4)

4 PCI Express (Gen3) x8 Intel X710-T4

5 PCI Express (Gen3) x16

6 PCI 32/33

ACS RTDI User Guide
Chapter 5 ACS Unified Server

ACS Edge Server Specifications

v2.3.0, July 2025 287

5. ACS Unified Server
The ACS Unified Server is a multipurpose server that supports compute and storage, application service, and database
storage. It also provides True Zero Trust security for the test floor, acting as the secure gatekeeper for the ACS Edge
Server and ACS Nexus, to securely communicate between the ACS Container Hub. Some of the key features of the ACS
Unified Server include:

• Scalable and redundant compute and storage.
• Secured data exchange.
• Host in-house, partner, and customer applications.
• Secured container launch onto ACS Edge Server.
• Automatic pre-population of container images from the ACS container hub.

When installed on the test floor, the main function of the ACS Unified Server is to act as a mirror server for the ACS
Container Hub. Container images can be pulled from the ACS Unified Server to the ACS Edge Server using APIs
provided by Advantest. For information on pull operations and other APIs, refer to C++ Client API Reference.

ACS RTDI User Guide
Chapter 5 ACS Unified Server
Container Registry

288 v2.3.0, July 2025

 Container Registry
The ACS Unified Server includes a Container Registry which can hold container images to be downloaded and run on
the ACS Edge Servers. The Container Registry can be setup to pull container images from the ACS Container Hub either
on demand or periodically.

 Licensing
The Unified Server includes a licensing service that, when enabled, will limit access to customer applications to a fixed
number of IP addresses. The Unified Server license checkout service queries the license server for the number of
available licenses for the customer application. When a request is initially made to the customer application from a
specific IP address, the middleware checks if there are any licenses available. If there are, then a license is checked out
and the request is permitted. If no licenses are available, the request is blocked.

So long as the IP address is included in the list of licensed IP addresses, all requests to the customer application are
permitted. The licensed IP addresses are valid for a default period of 24 hours. If no requests are received from an IP
address within a 24-hour period, that IP address is removed from the list of licensed IP address and that license is
released. All licensing logs are included in the monitoring logs, as described in the monitoring logs section below.

The license server running on the Unified Server is accessible to external clients (or license checkout services). To access
the Unified Server license server from an external client, do the following:

1. Set the url in the /etc/fne/client.conf on the local client to unifiedserver.local.

2. Set the server name to unifiedserver.local in the /opt/flexlm/license/offline.lic file.

3. Add the IP address of the Unified Server load balancer in the /etc/hosts file, as shown below:

 [root@fne-client ~]# cat /etc/fne/client.conf
 server
 {
 name=”FNE on central server”
 url=unifiedserver.local
 }

 [root@fne-client ~]# cat /opt/flexlm/license/offline.lic
 SERVER unifiedserver.local 000000000000
 DAEMON socbu
 USE_SERVER

 [root@fne-client ~]# cat /etc/hosts
 127.0.0.1 localhost
 10.120.230.158 unifiedserver.local #IP address of cluster load balancer

ACS RTDI User Guide
Chapter 5 ACS Unified Server

Licensing

v2.3.0, July 2025 289

Figure 5-1. Licensing Diagram

ACS RTDI User Guide
Chapter 5 ACS Unified Server
Monitoring

290 v2.3.0, July 2025

 Monitoring
The monitoring feature of the ACS Unified Server oversees registered test cells (ACS Edge Server and Host
Workstation) for measuring efficiency of data transfers and applications, as well as debugging any potential issues. Status
can be monitored through the Grafana web interface, and application logs can be monitored through cloud storages. Refer
to Monitoring Dashboards for details on navigating Grafana and utilizing its dashboards. The application logs, results,
and events are produced through the Advantest Logger SDK.

Data collected for monitoring and analysis are divided into four categories:

Table 5-1. Monitoring Data Categories

Data Description

Logs

Application Logs
Verbose information on what is happening in the application for tracking and debugging
purposes.

System Logs
Verbose information on what is happening in the system for tracking and debugging
purposes.

Application Results Output generated from performing an operation or action within the customer's application.

System Metrics Raw data exported from an application for quantitative measurements, such as the number
of images downloaded.

Events

Application Events
Custom events generated by the application.

System Events
Records of changes made on the system, such as user interactions, scheduled actions, and
failures.

The monitoring data will be periodically uploaded to configured destinations. The Unified Server supports multiple
destinations, including:

• FTP Server
• SFTP Server
• Azure File Storage
• Azure Blob Storage
• AWS S3 bucket
• Google Cloud Storage

ACS RTDI User Guide
Chapter 5 ACS Unified Server

Monitoring

v2.3.0, July 2025 291

 Logs
Logs are divided into two types: application logs and System (RTDI) logs. The attributes differ depending on the log
type.

Table 5-2. Application Log Attributes

Field Description

testerId The Host Workstation hostname.

edgeServerId The Edge Server serial number.

applicationId The application name.

timestamp The recorded timestamp.

level The criticality of the log, such as INFO, ERROR, etc.

message The log message.

Following is an example of an application log.

 {“testerId":"v93k-1", “edgeServerId": "MXQ02006VM", " applicationId ": "DPAT",

“timestamp": "1689878001“, "level":"INFO“, " message “: “ 2023-09-13T16:55:41Z INFO
application started"}

ACS RTDI User Guide
Chapter 5 ACS Unified Server
Monitoring

292 v2.3.0, July 2025

Table 5-3. System Log Attributes

Field Description

ServerType The source of the log, such as Edge Server, Unified Server, or Nexus.

ServerId The identification of the server.

service The service name.

instance The instance or container name.

timestamp The recorded timestamp.

level The criticality of the log, such as INFO, ERROR, etc.

message The log message.

labels Extra labels for additional aggregation. This attribute is optional.

Following are examples of system logs.

ACS Edge Server log:

 {"ServerType": "Edge Server","ServerId":"v93k-1:MXQ02006VM", "service": "traefik",

"instance":"traefik", “timestamp": "1689878001“ , "level":"INFO“, "message “:
“time="2023-09-13T16:55:41Z" level=info msg="Configuration loaded from flags."}

ACS Unified Server log:

 {"ServerType": "Unified Server","ServerId":"MXQ02006VM", "service": "log-consumer",

"instance":"log-consumer-1", “timestamp": "1689878001“, "level":"INFO“, " message
“: “time="2023-09-13T16:55:41Z" level=info msg="Configuration loaded from flags."}

ACS Nexus log:

 {"ServerType": "Nexus","ServerId":"v93k-1", "service": "Nexus", "instance":"",

“timestamp": "1689878001“, "level":"INFO“ , " message “: “time="2023-09-
13T16:55:41Z" level=info msg="Configuration loaded from flags."}

ACS RTDI User Guide
Chapter 5 ACS Unified Server

Monitoring

v2.3.0, July 2025 293

 Application Results

Table 5-4. Application Results Attributes

Field Description

testerId The Host Workstation hostname.

edgeServerId The Edge Server serial number.

applicationId The application name.

timestamp The recorded timestamp.

key The name of the result

value The application result value.

Following is an example of application results.

 {"testerId":"v93k-1", "edgeId":"MXQ02006VM", " applicationId ": "DPAT","timestamp":

"1689878001", "key": "new_upper_limit", "value": 10.0}

ACS RTDI User Guide
Chapter 5 ACS Unified Server
Monitoring

294 v2.3.0, July 2025

 System Metrics

Table 5-5. Metrics Attributes

Field Description

metric_name The name of the metric

custom_labels Extra labels for additional aggregation. This attribute is optional.

ServerType The server type, such as Edge Server, Unified Server, or Nexus.

ServerId The identification of the server.

value the metric value.

timestamp the recorded timestamp.

Following are examples of system metrics.

ACS Edge Server metrics:

number_of_images_downloaded{image_url="https://registry.advantest.com/image/version",
ServerType="Edge Server", ServerId="v93k-1:MXQ02006VM"} 149 1696463044000

ACS Unified Server metrics:

number_of_images_downloaded{image_url="https://registry.advantest.com/image/version",
ServerType="Unified Server", ServerId="MXQ02006VM"} 149 1696463044000

ACS Nexus metrics:

number_of_images_downloaded{image_url="https://registry.advantest.com/image/version",
ServerType="Nexus", ServerId="v93k-1"} 149 1696463044000

ACS RTDI User Guide
Chapter 5 ACS Unified Server

Monitoring

v2.3.0, July 2025 295

 Events
Events are divided into two types: Application events and System (RTDI services) events. The attributes differ
depending on the event type.

Table 5-6. Application Event Attributes

Field Description

testerId The source of the event, such as Edge Server, Unified Server, or Nexus.

edgeServerId The identification of the server.

applicationId The service name.

timestamp The recorded timestamp.

eventType The event type, such as INFO, DEBUG, or ERROR.

eventName The event name.

message The message of the event.

labels Extra labels for additional aggregation. This attribute is optional.

Following is an example of an application event.

 {"testerId":"v93k-1", "edgeServerId": "MXQ02006VM", "applicationId": "container_hub",

"timestamp": "1689878179",
 "eventType": "INFO", "eventName": "image_download", "message":"Download image

successfully",labels:{"image_url": "https://registry.advantest.com/image/version"}}

ACS RTDI User Guide
Chapter 5 ACS Unified Server
Monitoring

296 v2.3.0, July 2025

Table 5-7. System Services Event Attributes

Field Description

ServerType The source of the event, such as Edge Server, Unified Server, or Nexus.

ServerId The identification of the server.

timestamp The recorded timestamp.

Level The event type, such as INFO, DEBUG, or ERROR.

eventName The event name.

message The message of the event.

labels Extra labels for additional aggregation. This attribute is optional.

Following are examples of system events.

ACS Edge Server event:

 {"ServerType": "Edge Server", "ServerId":"v93k-1:MXQ02006VM", "timestamp":

"1689878179",
 "level": "INFO", "eventName": "imageDownloaded", "message":"Download image

successfully", labels:{"image_url": "https://registry.advantest.com/image/version"}}

ACS Unified Server event:

 {"ServerType": "Unified Server", "ServerId":"MXQ02006VM", "timestamp": "1689878179",
 "level": "INFO", "eventName": "image_downloaded", "message":"Download image

successfully",labels:{"image_url": "https://registry.advantest.com/image/version"}}

ACS Nexus event:

 {"ServerType": "Nexus", "ServerId":"v93k-1", "timestamp": "1689878179",
 "level": "INFO", "eventName": "image_downloaded", "message":"Download image

successfully",labels:{"image_url": "https://registry.advantest.com/image/version"}}

ACS RTDI User Guide
Chapter 5 ACS Unified Server

Monitoring

v2.3.0, July 2025 297

 Monitoring Dashboards
Grafana is an analytics and interactive visualization web application that is used together with the ACS Unified Server’s
monitoring capabilities to measure activities around the metrics pipeline and log pipeline. Grafana can be accessed from
any machine with a web browser that is on the same network as the ACS Unified Server.

To access Grafana, enter the following address in the url field of the web browser: https://unifiedserver.ui.local/grafana

 Dashboards Inventory
To access dashboards, click on the left-side panel menu and select Dashboards to see the full list.

Figure 5-2. Grafana Dashboard

 Grafana Tutorials
For useful information on how to use Grafana, refer to the links below.

• Grafana Fundamentals: https://grafana.com/docs/grafana/latest/fundamentals/

• Querying in Explore section: https://grafana.com/docs/grafana/latest/explore/

https://unifiedserver.ui.local/grafana
https://grafana.com/docs/grafana/latest/fundamentals/
https://grafana.com/docs/grafana/latest/explore/

ACS RTDI User Guide
Chapter 5 ACS Unified Server
Dynamic Certificates for MTLS

298 v2.3.0, July 2025

 Dynamic Certificates for MTLS
The Dynamic Certificates functionality introduces a service on the Unified Server that is used to dynamically generate
server-side certificates during the deployment of the Unified Server. These certificates are used in Mutual TLS (MTLS)
communication between the Unified Server and the connecting clients.

This feature also lets clients, like ACS Nexus, get their own client-side certificates from the Unified Server. During the
installation of clients (ACS Nexus), a dynamically generated token is securely stored at the client side. This token serves
as the authentication key to retrieving client-side certificates from the Unified Server.

Once the client has these certificates, they can use them for secure MTLS communication with the Unified Server.

Certificate Management
This service takes care of handling and automatically updating certificates on its own.

• The service is designed to automatically rotate certificates when they are about to expire, without requiring any
manual input.

• For clients fetching certificates from the Unified Server, they can customize their queries based on the desired
expiration time. This flexibility allows clients to generate short-lived certificates, enhancing the overall security of
the system.

• You can keep track of details about which clients are retrieving certificates in the Grafana Dashboard logs.

ACS RTDI User Guide
Chapter 5 ACS Unified Server

Application Support

v2.3.0, July 2025 299

 Application Support

 Container Hub Method
Multi-Tester Application Support is available by using harbor webhook service, where replication is done directly from
the Container Hub. The administrative tasks, such as project creation and webhook configuration, are performed by the
Advantest service team.

NOTES: Ensure that the project name and the repository name do not contain '/'. Images in Harbor are formatted as
<project>/<repo>:tag. If a '/' is included in the repository name, Harbor will mistakenly interpret it as
indicating another repository, causing it to fail to locate the image. For example, if a repository is named
'adv-dpat/adv_dpat', Harbor will incorrectly assume there is a folder called 'adv-dpat' and another
called 'adv_dpat', leading to the image not being found.

Also ensure that there are no artifacts without tags when replicating an image. If an artifact lacks a tag, the
Harbor API will not be able to locate it.

 SFTP Method
The Unified Server can run multiple applications. Multiple testers can be configured to use the application running on the
Unified Server. The application lifecycle can be controlled (e.g., start/stop application) using an application descriptor or
via CLI.

The Unified Server can download application images and application descriptors periodically from an SFTP Server.
Based on information provided in the application descriptor, the Unified Server will start the applications. Below are
step-by-step instructions for completing this process.

1. Using the Unified Server Management CLI (usm-cli), configure the Unified Server to communicate with a
SFTP server for application replication dedicated for 1:N mode (refer to section 4.8.3 of the ACS RTDI
Installation Guide for a detailed procedure).

2. Upload application (docker image archive file) and the corresponding application descriptor to the SFTP server
using the procedure provided below (steps a – e). Prior to uploading the files, take note of the following:

• Supported formats include:

Image .tgz
.tar.gz

Application Descriptor .json

• All image files must be moved to the target SFTP path before moving the application descriptor files.
• The application descriptor file name must be the same as the name of the application descriptor.
• The name of the image needs to be in the format <project_name>/<image_name>:<image_tag>.
• There is no restriction on the filename of the image file.

ACS RTDI User Guide
Chapter 5 ACS Unified Server
Application Support

300 v2.3.0, July 2025

Step a: Save the image to .tar.gz using the following command:

sudo docker save <project_name>/<image_name>:<image_tag> | gzip > <filename>.tar.gz

Step b: Use the following command to verify that the image can be loaded by docker and to check for
possible image corruption.

sudo docker load -i <image_tar.gz_filename>

If the image is valid, output will indicate "Loaded image: project_name/image_name:tag" at the end.

If there is an error, re-download the image (repeat step a) and try again.

Step c: Log in to SFTP.

sftp <SFTP_USER>@<SFTP_HOST>

Step d: Upload image (.tar.gz) and application descriptor (.json) to the root directory of the SFTP server.

NOTE: To prevent replication from occurring while files are still being uploaded, it is recommended to first
upload the files to a temporary location (e.g. root), then move the files to the target folder. The
permission to both the temporary location and the target folder is needed.

put <path to the image file or the application descriptor file on the work station>

Step e: Rename and move files to the correct path on the SFTP server. Ensure that the image files (.tar.gz) are
moved first, and then its corresponding application descriptor files (.json)

rename <File_name> <SFTP_SERVER_PATH as configured from step 1 above>/<File_name>

NOTE: If there is a need to upload the files to two or more Unified Servers, repeat steps d and e, ensuring
that <SFTP SERVER PATH> properly reflects the target Unified Server on step e. For example, if
there are two Unified Servers to be configured, where the first Unified Server is configured to
replicate from SFTP Server path /abc, while the second Unified Server is configured to replicate from
SFTP Server path /xyz, steps d and e must be done twice:

First: SFTP upload and move to /abc
Second: SFTP upload and move to /xyz

This way, the files will be replicated to both Unified Servers.

ACS RTDI User Guide
Chapter 5 ACS Unified Server

Application Support

v2.3.0, July 2025 301

Notes about Application Descriptors

Requirements:

• exposed_ports
Ports opened for customers to connect their application. The format should be a single string and the ports
are divided with commas.

o mTLS
A single port without ":" (colon) will be used as a gateway for traefik to route customer requests to
their containers. An example of the URL of such a request is provided below:

-If there is only one mTLS port provided:
https://unifiedserver.acs/applications/{container_name}-21122/ {customer’s path}

-If there are multiple mTLS ports provided:
https://unifiedserver.acs/applications/{container_name}-{container-port}/{customer’s path}

NOTE: Static certifications are required.

• mapped_ports
o non-mTLS

Two port numbers with ":" (colon) will map the host's port to the container port directly (for
example, "<host_port>:<container_port>"). The default protocol is TCP. However, protocols such as
TCP or UDP can be added optionally (for example, 8000:8000/tcp). Additional examples are as
follows:

Example 1: "8002:8002": http://unifiedserver.local:8001/{customer’s path}
Example 2: "8000:8000/tcp": http://unifiedserver.local:8000/{customer’s path}

Environment:

• OPERATION
Allows the customer application to be started, stopped, or ignored by monitoring the operation inside the
application descriptor.

o start: Removes older container and restarts the container
o stop: Stops and removes the container and volumes
o ignore: Updates the application descriptor without applying any operation on the container or volume

Example of Application Descriptor content

{
 "version": "1",
 "name": "testing",
 "selector": {
 "device_name": "testing",
 "product_family": "*",
 "test_program_name": "*",
 "test_program_revision": "*"
 },
 "unified": {
 "containers": [{
 "name": "testing",
 "image": "test/app-metric:latest",
 "requirements": {
 "gpu": false
 "exposed_ports":[8100, 8088],
 "mapped_ports":["9002:9002/tcp"],

ACS RTDI User Guide
Chapter 5 ACS Unified Server
Application Support

302 v2.3.0, July 2025

 },
 "metrics": {
 "port": 8001,
 "path": "/metrics"
 },
 "volume_attachments": [
 "volume1:rw", "volume2"
],
 "environment": {

 }
 }],
 "volumes": [{
 "name": "volume1:rw",
 "image": "test/app-metric:latest"
 }, {
 "name": "volume2",
 "image": "test/app-metric:latest"
 }]
 }
}

The acs-application tool can be used to validate the application descriptor.

3. When the container is created/stopped, there will be customer events sent to the monitoring upload destinations
as configured during Unified Server installation (refer to section 4.8.2.2 of the ACS RTDI Installation Guide for
more details). The filename will be in the format <unifiedserver_id>_<timestamp>.event. See below for an
example of file content:

{ "level": "info", "message": "[POST containers/create_start] Response detail:
Container jason-testing-metric created with metric sidecar and started with metric
sidecar", "ServerType": "Unified Server", "ServerId": "SERVER_ID'", "service":
"edge_resilience_serverapi", "instance": "edge_resilience_serverapi", "timestamp":
"event_timestamp" }

4. Optionally, use the usm-cli tool to control applications as needed:

a. From usm-cli main menu, navigate to the Applications option.
b. Choose between the following available options:

• Start Application
Starts an application specific to the user-entered application descriptor name.

• Stop Application
Stops an application specific to the user-entered application descriptor name.

• Remove Volume
Removes a volume specific to the user-entered application descriptor name.

• List Applications
Lists running containers with container name, created date, and started date.

ACS RTDI User Guide
Chapter 5 ACS Unified Server

Application Support

v2.3.0, July 2025 303

5. Optionally, a liveness probe check can be done when a customer app specifies health check in a Dockerfile. An
internal service (app-monitor) on the Unified Server will automatically restart the app container if the container
health status becomes Unhealthy. To implement health check, see the highlighted entries below:

FROM python:3.9-slim

WORKDIR /app

RUN apt-get update && apt-get install -y curl && rm -rf /var/lib/apt/lists/*

COPY . /app

RUN pip install --no-cache-dir prometheus_client
HEALTHCHECK --interval=5s --timeout=5s --start-period=5s --retries=1 \
 CMD curl --fail http://localhost:8001/healthcheck || exit 1
CMD[“./start.sh”]

RUN apt-get update && apt-get install -y curl
Curl is a common tool for HTTP-based service, but you can use other methods depending on the nature of your
application.

HEALTHCHECK --interval=5s --timeout=5s --start-period=5s --retries=1 \
CMD curl --fail http://localhost:8001/healthcheck || exit 1

Following is additional information regarding each HEALTHCHECK config setting:

• Interval: Docker will run the healthcheck command every 5 seconds.

• Timeout: If the command takes longer than 5 seconds, the health check is considered to have failed.

• Start-period: This defines the start period for the container to stabilize before starting the health checks.
During this period, any health check failures are considered to be successes.

• Retries: This sets the number of consecutive failures needed to consider the container as unhealthy.

• CMD curl –fail http://localhost:8001/healthcheck || exit 1: This is the command that is executed every time
the health check runs. If your application returns 4xx or 5xx HTTP status code, it causes curl to return a
non-zero exit code which indicates failure.

ACS RTDI User Guide
Chapter 5 ACS Unified Server
Application Support

304 v2.3.0, July 2025

 1:N Application Descriptors
Application Descriptor fields specific to the Unified Server were added under the new unified field, replacing the
deprecated 1N environment variable in the edge field.

{
 "version": "1",
 "name": "app",
 "unified": {
 "containers": [
 {
 "name": "app-name",
 "image": "registry.advantest.com/project/image-name:tag”,
 “readiness_probe”: {
 “failure_threshold”: 3,
 “initial_delay_seconds”: 30,
 “period_seconds”: 10,
 “success_threshold”: 1,
 “timeout_seconds”: 10,
 “http_get”: {
 “path”: “/ready”,
 “port”: “80”
 }
 },
 “liveness_probe”: {
 “failure_threshold”: 3,
 “initial_delay_seconds”: 30,
 “period_seconds”: 10,
 “success_threshold”: 1,
 “timeout_seconds”: 10,
 “exec”: {
 “command”: [
 “/bin/sh”,
 “-c”,
 “touch /tmp/file; cat /tmp/file”
]
 }
 },
 “lifecycle”: {
 “pre_stop”: {
 “httpGet”: {
 “path”: “/pre_stop”,
 “port”: 80
 }
 }
 },
 “termination_grace_period”: 30
 “environment”: {
 “STREAM_ENABLED”: “true”
 },
 }
]
 }
}

ACS RTDI User Guide
Chapter 5 ACS Unified Server

Application Support

v2.3.0, July 2025 305

Readiness and Liveness Probe
A readiness probe is used to determine if a container is ready to serve traffic. If the readiness probe fails, the pod is
considered not ready, and Kubernetes will not send any traffic to it until it passes.

A liveness probe in Kubernetes is used to determine if a container is still alive and running properly. If the liveness probe
fails, Kubernetes will assume the container has failed and will restart it to recover.

Both probes have the following configuration for the type of probe:

• http_get
o path: The path to access on the HTTP server.
o port: The name or number of the port to access on the container. The name must be an

IANA_SVC_NAME. The valid number range is 1 to 65535.

• exec
o command: The command line to execute inside the container. For example, [cat, /tmp/health]

• failure_threshold: The minimum consecutive failures for the probe to be considered failed after having succeeded.

• initial_delay_seconds: The number of seconds after the container has started before liveness probes are initiated.

• period_seconds: How often (in seconds) to perform the probe.

• success_threshold: The minimum consecutive successes for the probe to be considered successful after having
failed.

• timeout_seconds: The number of seconds after which the probe times out.

Shutdown Hook
The Shutdown Hook feature enables users to define custom behavior immediately before an application is terminated to
guarantee a graceful shutdown.

Applications may be terminated due to user request, liveness or startup probe failure, resource contention, or other
Kubernetes related events. By default, when terminating a container, Kubernetes sends a SIGTERM to the main process
and waits for termination_grace_period configuration. After this time, if the application still has not terminated,
Kubernetes sends a SIGKILL to all remaining processes.

When the Shutdown Hook is defined via the lifecycle.pre_stop option, Kubernetes will execute this action before sending
the SIGTERM. This allows any custom behavior to be implemented, such as cleanup actions. In parallel, the
termination_grace_period countdown will start. This means that the time to finish the pre_stop hook plus the SIGTERM
should be less than the grace period. Otherwise, the application will be subject to a non-graceful shutdown.

httpGet and exec are the two pre_stop actions that are supported. Both actions are executed inside the container itself.

• httpGet
o port: The port number to reach the process inside the container. Valid range is 1 to 65535.
o path: The HTTP path to reach the API inside the container.
o Kubernetes will perform a GET request to http://localhost:{httpGet.port}/{httpGet.path}

and expect a 200 OK status as response.

• exec
o A list of strings representing a shell command to be executed, from which Kubernetes expects a success

code (0).

Data Streaming
The Data Streaming feature enables user applications to stream data from the Unified Server through OneAPI. To enable
this feature, add STREAM_ENABLED: true to the Environment variables dictionary of your Application Descriptor.
With Data Streaming enabled, your application can integrate OneAPI to stream data from testers via the Unified Server
for real-time data retrieval.

ACS RTDI User Guide
Chapter 5 ACS Unified Server
Unified Server Application Testing

306 v2.3.0, July 2025

 Unified Server Application Testing
Customers can securely communicate with their applications running on the Unified Server using the Customer App API.

For this purpose, Advantest provides both a Web Interface (via Container Hub) and a Command Line Interface (CLI)
tool.

 Customer API via CLI
See below for details on how to use the Customer App API via CLI.

Usage Guidelines

• Allowed Special Characters: { +, !, @, =, -, _, * }

• Disallowed: All other special characters

Supported Commands
The CLI currently supports the following commands:

• list-unifiedservers

• list-applications

• test

Command list-unifiedservers

Description Retrieves the list of Unified Servers hosting the customer's applications

Usage Format apptest-cli list-unifiedservers -o <organization_name> --username
<containerhub_username> --password <containerhub_password>

Example apptest-cli list-unifiedservers -o acsqa --username customer1 --password
123456

Output ["unifiedserver1", "unifiedserver2"]

ACS RTDI User Guide
Chapter 5 ACS Unified Server

Unified Server Application Testing

v2.3.0, July 2025 307

Command list-applications

Description Fetches applications running on a specified Unified Server. Returns app name, exposed ports, and
status.

Usage Format apptest-cli list-applications --unifiedserver <unifiedserver_name> -o
<organization_name> --username <containerhub_username> --password
<containerhub_password>

Example apptest-cli list-applications --unifiedserver unifiedserver1 -o acsqa --
username customer1 --password 123456

NOTE: This uses acs-application to list the descriptor, then runs the App Monitor API to identify the
matching Unified Server.

Output [{"Application Name": "shutdownhook031","Exposed Ports":
[8080],"Application Status": "RUNNING”},{"Application Name": "demo2",
"Exposed Ports": [80],"Application Status": "RUNNING"}]

Command test

Description Calls an API endpoint of a customer application hosted on a Unified Server, and returns the actual
response.

Usage Format apptest-cli test -X <request_type> --url
https://<unifiedserver>/<app_name>-<app_port>/<api_path> -o
<organization> --username <containerhub_username> --password
<containerhub_password> -d <data>

Example apptest-cli test -X GET --url https://unifiedserver1/app3-8000/health -o
acsqa --username customer1 --password 123456

NOTE: This call logs the user executing the API.

Output {\"status_code\": 200, \"response_time_ms\": 24, \"response\":
{\"message\":\"health\"}}

NOTE: Be aware of OS-specific syntax differences. There are differences between Linux and Windows CLI usage,
especially regarding quoting and escaping characters

Example CLI Command for Linux
apptest-cli test -X POST --url https://unifiedserver1/application1-port/endpoint -
-data '{ "key": "value" }' --organization org_name --username
username_containerhub --password docker_secret_containerhub -H "Accept:
application/json" -H "Content-Type: application/json"

Example CLI Command for Windows
apptest-cli test -X POST --url https://unifiedserver1/application1-port/endpoint -
-data '{"name": "value"}' --organization org_name --username username_containerhub
--password docker_secret_containerhub -H '"Accept: application/json"' -H
'"Content-Type: application/json"'

ACS RTDI User Guide
Chapter 5 ACS Unified Server
File Synchronization

308 v2.3.0, July 2025

 File Synchronization
File synchronization is a feature that enables ACS RTDI users to seamlessly transfer files from their local machines to
Unified Servers in OSAT facilities, allowing applications deployed on these servers to access and utilize the files. The
primary purpose of this feature is to support applications running on unified servers that require regular data updates in
production. File synchronization streamlines the workflow and allows for a more efficient method for transferring files to
the unified servers, avoiding the overhead and delays associated with file transfer via Docker image.

 Overview
The file synchronization diagram below outlines the flow of data files from the user’s local environment to the Unified
Server where the customer application operates.

Figure 5-3. File Synchronization Diagram

Each component in the above diagram is listed and described in the table below.

Table 5-8. File Synchronization Components

Component Description Function

acsdata-cli
(Local Machine Tool)

The acsdata-cli is a command-line tool
provided to users for managing data file
uploads from their local machines.

Using this tool, users can initiate the
transfer of specific data files that need to be
synchronized with the application on the
Unified Server.

Advantest Cloud The Advantest Cloud acts as the
intermediary that facilitates the secure
transfer of data files from the user’s local
machine to the Unified Server.

When a data file is uploaded via the acs-
data-cli, it is first stored temporarily on the
Advantest Cloud before being transferred
to the Unified Server. This setup ensures
secure and reliable data handling.

ACS RTDI User Guide
Chapter 5 ACS Unified Server

File Synchronization

v2.3.0, July 2025 309

Component Description Function

Orchestrator
(File Transfer Controller)

The Orchestrator on the Unified Server
manages the final step of the data file
synchronization process.

Once the data file reaches the Unified
Server, the Orchestrator takes over, moving
the file into the designated storage location
(referred to as "Customer Volume") on the
Unified Server. This ensures the data is
accessible to the applications that need it.

Customer Volume
(Storage for Data Files)

The Customer Volume is a dedicated
storage location on the Unified Server
where data files are stored for application
use.

The Orchestrator deposits the data file into
this volume, where it remains accessible to
the customer application. This setup
ensures the application always has the latest
version of the data without requiring a full
redeployment.

Customer Application This is the end-user application running
on the Unified Server, which utilizes the
synchronized data files for its operations.

The Customer Application accesses data
files directly from the Customer Volume.
With this setup, the application can
seamlessly use updated data files without
the need for extensive server or application
changes.

Based on the components listed in Table 5-8 above, the following is a summarization of how the file synchronization
process works.

1. Initiate File Upload: The user uploads a data file from their local machine using the acsdata-cli tool.

2. Transfer to Advantest Cloud: The file is temporarily stored in the Advantest Cloud for secure handling.

3. Orchestrator Transfer: The Orchestrator on the Unified Server retrieves the file from the cloud and places it
into the Customer Volume.

4. Application Access: The Customer Application can now directly access and utilize the updated data file from
the Customer Volume.

 acsdata-cli Command Line Tool Requirement and Path
System Requirement

• Linux on x86_64

The acsdata-cli command line tool is distributed as a single, self-contained executable binary file. It is installed on the
Linux environment which is used for generating and uploading files. Request the latest version from your Advantest
technical contact and copy it to a location in your PATH.

sudo cp ./acsdata-cli /usr/local/bin/ acsdata-cli

ACS RTDI User Guide
Chapter 5 ACS Unified Server
File Synchronization

310 v2.3.0, July 2025

 acsdata-cli Commands
The acsdata-cli tool is a command-line interface (CLI) for managing data files on Advantest's unified servers. This tool
enables users to upload, list, and delete files stored on unified server volumes, facilitating seamless data management and
synchronization with customer applications.

The acsdata-cli supports three main commands:

• Upload
Uploads a data file from the local machine to a specified volume on the unified server.

• List
Lists files available on a specific server volume or provides details about a particular file.

• Delete
Deletes specified files from a unified server volume.

Upload Command

UNIFIED_SERVER --volume-name VOLUME_NAME --file-path FILE_PATH [--ttl TTL] [--overwrite]
[--volume-size VOLUME_SIZE] [--verbose]

Description The upload command allows you to transfer a data file from your local machine to a designated
volume on the Unified Server.

Parameters Required:

--username USERNAME Your Container Hub username.

--password PASSWORD Your Container Hub password.

--unified-server UNIFIED_SERVER The name of the Unified Server.

--volume-name VOLUME_NAME The name of the volume on the
Unified Server.

--file-path FILE_PATH Path to the data file on your local
machine.

Optional:

--ttl TTL Time-to-Live in days (default is 15).

--overwrite Overwrites the file if it already exists
in the specified volume.

--volume-size VOLUME_SIZE Volume size in GB (default is 10).

--verbose Enables verbose output, providing
more detailed feedback.

Example acsdata-cli upload --username johndoe –-password password123 --
unified-server server1 --volume-name vol1 --file-path
/path/to/file.json --ttl 30 --overwrite --verbose

ACS RTDI User Guide
Chapter 5 ACS Unified Server

File Synchronization

v2.3.0, July 2025 311

List Command

acsdata-cli list --username USERNAME --password PASSWORD [--unified-server
UNIFIED_SERVER] [--volume-name VOLUME_NAME] [--file-name FILE_NAME] [--verbose]

Description The list command retrieves information about files stored on the Unified Server volumes. This
command can list all files in a volume or details about a specific file.

Parameters Required:

--username USERNAME Your Container Hub username.

--password PASSWORD Your Container Hub password.

Optional:

--unified-server UNIFIED_SERVER The name of the Unified Server.

--volume-name VOLUME_NAME The name of the volume on the
Unified Server.

--file-name FILE_NAME The specific file name to retrieve
details for.

--verbose Enables verbose output.

Example acsdata-cli list --username johndoe –-password password123 --unified-
server server1 --volume-name vol1 --verbose

ACS RTDI User Guide
Chapter 5 ACS Unified Server
File Synchronization

312 v2.3.0, July 2025

Delete Command

acsdata-cli list --username USERNAME --password PASSWORD [--unified-server
UNIFIED_SERVER] [--volume-name VOLUME_NAME] [--file-name FILE_NAME] [--verbose]

Description The delete command allows you to remove one or more files from a specified volume on the
Unified Server.

Parameters Required:

--username USERNAME Your Container Hub username.

--password PASSWORD Your Container Hub password.

--unified-server UNIFIED_SERVER The name of the Unified Server.

--volume-name VOLUME_NAME The name of the volume on the
Unified Server.

--file-name FILE_NAME The name of the file to delete.

Optional:

--verbose Enables verbose output.

Example acsdata-cli delete --username johndoe --unified-server server1 --
volume-name vol1 --file-name file.json --verbose

Additional Notes:
The following notes apply to all commands.

• Volume Name Requirements
Volume names can only contain lowercase letters, numbers, periods (.), and hyphens (-). Volume names cannot
start or end with periods or hyphens.

• Supported File Types
Only JSON and Parquet files are accepted. If a file with a different MIME type is uploaded, an error will be
returned.

• Retry Mechanism
For uploads, the tool retries failed attempts up to 3 times, with a 30-second delay between attempts.

ACS RTDI User Guide
Chapter 5 ACS Unified Server

Redis Memory Store SDK for Cross-Cluster Replication

v2.3.0, July 2025 313

 Redis Memory Store SDK for Cross-Cluster Replication
The MemoryStore SDK provides a simple interface for interacting with a Redis key-value store. This SDK allows you to
set, get, delete, and check the existence of keys for Redis datatypes – like Redis Strings, Redis Hash, and Redis Set – in a
Redis database.

This SDK enables clients to replicate their data in real-time stored in a Redis Cluster to other Unified Servers. It includes
a boolean parameter (is_global) that is used across various functions of this SDK to determine whether the data is
global—requiring replication to other Unified Servers—or local, in which case it remains confined to the current server.
The default value of this parameter is set to 'True' implying that all the data modifications done in Redis Cluster using
this SDK will be replicated across other connected Unified Servers in real-time.

 Using the SDK in your Application
To obtain the SDK, request the latest MemoryStore SDK from your Advantest technical contact.

Installation prerequisites:

• Python 3.7 or later is running

• redis-py library (version 5.0.0 or later) is installed using one of the following methods:

o pip install redis

o pip install -r requirements.txt
This installs the dependency via the bundled requirements.txt (which specifies redis>=5.0.0)

Integrate the SDK:

Place the SDK script (e.g. memory_store.py) alongside your application code.

Import the main class in your Python module:

from memory_store import MemoryStore

 Explore the API:

See the sections below for detailed examples of each SDK method.

 Configuring Replication
Replications can be configured as either unidirectional or bidirectional. To set up a Unified Server to replicate data from
a source Unified Server, use the UnifiedServer config CLI or UI tool. For bidirectional replication, repeat the same
configuration steps on the source Unified Server, treating the current server as its source. For assistance, please contact
your Advantest technical representative.

 Resolving Conflicts from Concurrent Redis Key Updates Across Clusters
When multiple Unified Servers update the same Redis key simultaneously during data replication, conflicts are resolved
using a last‑writer‑wins approach. The value from the most recent successful write is propagated to—and preserved by—
all Redis clusters managed by the participating Unified Servers, ensuring a consistent state across sites.

ACS RTDI User Guide
Chapter 5 ACS Unified Server
Redis Memory Store SDK for Cross-Cluster Replication

314 v2.3.0, July 2025

 Impact of Network Disruptions between Cross-Site UnifiedServer Clusters
During cross‑site outages, the originating UnifiedServer buffers unsynchronized Redis key changes for up to five days or
5 GB of accumulated data, whichever limit is reached first. When connectivity is restored, all buffered updates are
automatically replicated to the Redis clusters of the other UnifiedServers, ensuring data consistency across sites.

 Allowed Redis Value Size
When performing insert or update operations with MemoryStore class—namely the set, hset, and sadd methods—each
value stored for a key must be no larger than 25 MiB.

 MemoryStore Class Methods
The MemoryStore class provides an interface for interacting with a Redis cluster, offering basic key-value operations
such as setting, retrieving, deleting keys for Redis datatypes (such as Redis Strings, Redis Hash and Redis Set), and
managing Redis configuration (such as memory limits).

keys(self, pattern: str = "*", is_global: bool = True) -> list

Description Returns a list of keys that match the given pattern.

NOTE: This method scans all the nodes of the Redis Cluster to get the keys based on the given
pattern. This is an expansive operation and might slow down other operations
performed concurrently on the RedisCluster. Not recommended to be heavily used in
Production settings.

Parameters

pattern

(str)
The pattern to match keys against.

is_global

(bool) [Default is 'True']
If set to 'True', the keys are returned from 'global:'
namespace – the keys which are replicated to/from
other UnifiedServers.
If 'False', the keys are returned from 'local:'
namespace – the keys local to this UnifiedServer.

Returns (list)

A list of keys that match the pattern. Returns an empty list otherwise.

Example all_keys = store.keys()

ACS RTDI User Guide
Chapter 5 ACS Unified Server

Redis Memory Store SDK for Cross-Cluster Replication

v2.3.0, July 2025 315

type(self, key: str, is_global: bool = True) -> str

Description Determines the Redis data type of the given Redis key, allowing the client to call the appropriate
commands—string (SET, GET), hash (HSET, HGET, HDEL, HGETALL), or set (SADD,
SREM, SMEMBERS)—for that key.

Parameters
key

(str)
The key to get the type for.

is_global

(bool) [Default is 'True']
If set to 'True', the keys from 'global:' namespace –
the keys replicated to/from other UnifiedServers are
used.
If 'False', the keys from 'local:' namespace – the keys
local to this UnifiedServer are used.

Returns (list)

A list of keys that match the pattern. Returns an empty list otherwise.

Example all_keys = store.keys()

set(self, key: str, value: str, expiration: Optional[int]=None, is_global: bool=True) ->
bool

Description Sets a key-value pair in the Redis with an optional expiration time.

NOTE: If 'is_global' is set as False, then this change is not replicated to other connected
UnifiedServer Redis Clusters.

Parameters
key

(str)
The key to store in Redis.

value (str)
The value associated with the key.

expiration (int, optional)
Time in seconds until the key expires. Default is
None.

is_global (bool) [Default is `True`]
If set to `True`, the change is replicated globally to
other connected UnifiedServers.

Returns (bool)
True if the key was set successfully. False otherwise.

Example is_added = store.set("example_key", "example_value")

ACS RTDI User Guide
Chapter 5 ACS Unified Server
Redis Memory Store SDK for Cross-Cluster Replication

316 v2.3.0, July 2025

get(self, key: str, is_global: bool = True) -> Optional[str]

Description Retrieves the value associated with the specified key.

Parameters

key

(str)
The key to retrieve the value for.

is_global (bool) [Default is `True`]
If set to `True`, the key is returned from `global:`
namespace – the keys which are replicated to/from
other UnifiedServers.
If `False`, the keys are returned from `local:`
namespace – the keys local to this UnifiedServer.

Returns Optional[str]

The value if the key exists, otherwise None.

Example value = store.get("example_key")

delete(self, key: str, is_global: bool = True) -> bool

Description Deletes the key-value pair for the given key.

NOTE: If `is_global` is set as False, then this change is not replicated to other connected
UnifiedServer Redis Clusters.

Parameters

key

(str)
The key to delete.

is_global (bool) [Default is `True`]
If set to `True`, the key to be deleted is fetched from
`global:` namespace – the keys which are replicated
to/from other UnifiedServers.
If `False`, the key to be deleted is fetched from
`local:` namespace – the keys local to this
UnifiedServer.

Returns (bool)

True if the key was deleted. False otherwise.

Example is_deleted = store.delete("example_key")

ACS RTDI User Guide
Chapter 5 ACS Unified Server

Redis Memory Store SDK for Cross-Cluster Replication

v2.3.0, July 2025 317

exists(self, key: str, is_global: bool = True) -> bool

Description Checks if a key exists in the Redis Cluster.

Parameters

key

(str)
The key to check.

is_global (bool) [Default is `True`]
If set to `True`, the key is checked from `global:`
namespace – the keys which are replicated to/from
other UnifiedServers.
If `False`, the key is checked from `local:`
namespace – the keys local to this UnifiedServer.

Returns (bool)

True if the key exists. False otherwise.

Example exists = store.exists("example_key")

ACS RTDI User Guide
Chapter 5 ACS Unified Server
Redis Memory Store SDK for Cross-Cluster Replication

318 v2.3.0, July 2025

hset(self, key: str, mapping: Dict[str, Any], expiration: Optional[int]=None, is_global:
bool=True) -> bool

Description Inserts the supplied mapping— a dictionary of field‑value pairs—into an existing Redis hash, or
creates the hash if it doesn’t yet exist. Accepts an optional expiration to set an expiration time for
the hash key.

If `is_global` is set as False, then this change is not replicated to other connected UnifiedServer
Redis Clusters.

NOTE: Replication occurs at the individual field level. For example, if 5 field–value pairs are
added to a hash, each field is evaluated independently under the last‑writer‑wins rule; the
most recent update for every field is synchronized across all UnifiedServers.

Parameters

key

(str)
The Redis Hash key to store in Redis.

mapping (Dict[str, Any])
The dictionary of field-value pairs for the Redis
Hash.

expiration (int, optional)
Time in seconds until the key expires. Default is
None.

is_global (bool) [Default is `True`]
If set to `True`, the change is replicated globally to
other connected UnifiedServers.

Returns (bool)

True if the hash mapping was set successfully. False otherwise.

Example is_added = store.set("example_hash_key",

 {"field_1": "value_1",

 "field_2": "value_2", ...,

 "field_n": "value_n"})

ACS RTDI User Guide
Chapter 5 ACS Unified Server

Redis Memory Store SDK for Cross-Cluster Replication

v2.3.0, July 2025 319

hget(self, key: str, field: str, is_global: bool = True) -> Optional[str]

Description Retrieves the value of a single field from the specified Redis hash. If the hash (or field) does not
exist, returns None.

Parameters

key (str)
The Redis hash key.

field (str)
The field in Redis hash to retrieve the value for.

is_global (bool) [Default is `True`]
If set to `True`, the key is returned from `global:` namespace – the
keys which are replicated to/from other UnifiedServers.
If `False`, the key is returned from `local:` namespace – the keys
local to this UnifiedServer.

Returns Optional[str]

The value if the key exists, otherwise None.

Example value = store.hget("example_hash_key", "field_1")

ACS RTDI User Guide
Chapter 5 ACS Unified Server
Redis Memory Store SDK for Cross-Cluster Replication

320 v2.3.0, July 2025

hdel(self, key: str, fields: List[str], is_global: bool = True) -> bool

Description Deletes one or more fields from the specified Redis hash. Returns True if at least one field was
removed, otherwise False.

If `is_global` is set as False, then this change is not replicated to other connected UnifiedServer
Redis Clusters.

NOTE: Replication occurs at the individual field level. For example, if 5 fields are deleted from
a hash, each field is evaluated independently under the last‑writer‑wins rule; the most
recent operation for every field is synchronized across all UnifiedServers.

Parameters

key (str)
The Redis hash key.

fields (List[str])
The list of fields to be deleted from the provided
Redis hash key.

is_global (bool) [Default is `True`]
If set to `True`, the keys are deleted from `global:`
namespace – the keys which are replicated to/from
other UnifiedServers.
If `False`, the keys are deleted from `local:`
namespace – the keys local to this UnifiedServer.

Returns (bool)

True if at least one field was removed. False otherwise.

Example is_deleted = store.hdel("example_hash_key",["field_1", ...,
"field_n"])

ACS RTDI User Guide
Chapter 5 ACS Unified Server

Redis Memory Store SDK for Cross-Cluster Replication

v2.3.0, July 2025 321

hgetall(self, key: str, is_global: bool = True) -> Dict[str, Any]

Description Fetches every field‑value pair stored in the given Redis hash and returns them as a dictionary. If
the hash is missing, an empty dictionary is returned.

Parameters

key (str)
The Redis hash key to retrieve the field-value pairs for.

is_global (bool) [Default is `True`]
If set to `True`, the keys are returned from `global:` namespace –
the keys which are replicated to/from other UnifiedServers.
If `False`, the keys are returned from `local:` namespace – the keys
local to this UnifiedServer.

Returns Dict[str, Any]

The dictionary mapping of field-value pairs from Redis hash if the key exists, otherwise
empty dictionary.

Example field_value_mapping = store.hgetall("example_hash_key")

hexists(self, key: str, field: str, is_global: bool = True) -> bool

Description Checks whether a specific field exists within the target Redis hash. Returns True if the field is
present, otherwise False.

Parameters

key (str)
The Redis hash key.

field (str)
The field to be checked within the Redis hash.

is_global (bool) [Default is `True`]
If set to `True`, the key is checked from `global:` namespace – the
keys which are replicated to/from other UnifiedServers.
If `False`, the key is checked from `local:` namespace – the keys
local to this UnifiedServer.

Returns (bool)

True if the key exists. False otherwise.

Example exists = store.hexists("example_hash_key", "field_1")

ACS RTDI User Guide
Chapter 5 ACS Unified Server
Redis Memory Store SDK for Cross-Cluster Replication

322 v2.3.0, July 2025

sadd(self, key: str, members: List[Any], expiration: Optional[int]=None, is_global:
bool=True) -> bool

Description Adds the supplied list of members to a Redis set, creating the set if it doesn’t already exist.
Accepts an optional expiration to set an expiration time for the set key.

If `is_global` is set as False, then this change is not replicated to other connected UnifiedServer
Redis Clusters.

NOTE: For Redis sets, replication treats the entire set as a single unit rather than tracking
individual members. Any change—whether adding or removing members—overwrites
the previous version of the set under the last‑writer‑wins rule in every UnifiedServer,
ensuring that all clusters maintain an identical, up‑to‑date copy.

Parameters

key (str)
The key to store in Redis.

members (List[Any])
The list of members to be added to the Redis set.

expiration (int, optional)
Time in seconds until the key expires. Default is None.

is_global (bool) [Default is `True`]
If set to `True`, the change is replicated globally to other connected
UnifiedServers.

Returns (bool)

True if the members were added to an existing or new Redis set successfully. False
otherwise.

Example is_added = store.sadd("example_set_key", ["member_1", ...,

 "member_n"])

ACS RTDI User Guide
Chapter 5 ACS Unified Server

Redis Memory Store SDK for Cross-Cluster Replication

v2.3.0, July 2025 323

srem(self, key: str, members: List[str], is_global: bool = True) -> bool

Description Removes one or more members from the specified Redis set. Returns True if at least one member
was deleted; otherwise, False.

If `is_global` is set as False, then this change is not replicated to other connected UnifiedServer
Redis Clusters.

NOTE: For Redis sets, replication treats the entire set as a single unit rather than tracking
individual members. Any change—whether adding or removing members—overwrites
the previous version of the set under the last‑writer‑wins rule in every UnifiedServer,
ensuring that all clusters maintain an identical, up‑to‑date copy.

Parameters

key (str)
The Redis set key.

members (List[str])
The list of members to be deleted from the provided Redis set key.

is_global (bool) [Default is `True`]
If set to `True`, the keys are deleted from `global:` namespace – the
keys which are replicated to/from other UnifiedServers.
If `False`, the keys are deleted from `local:` namespace – the keys
local to this UnifiedServer.

Returns (bool)

True if at least one member was removed. False otherwise.

Example is_deleted = store.srem("example_set_key", ["member_1",
..,"member_n"])

ACS RTDI User Guide
Chapter 5 ACS Unified Server
Redis Memory Store SDK for Cross-Cluster Replication

324 v2.3.0, July 2025

smembers(self, key: str, is_global: bool = True) -> List[Any]

Description Retrieves all members of the given Redis set as a Python set. If the set does not exist, an empty
set is returned.

Parameters

key (str)
The Redis set key to retrieve the members for.

is_global (bool) [Default is `True`]
If set to `True`, the keys are returned from `global:` namespace –
the keys which are replicated to/from other UnifiedServers.
If `False`, the keys are returned from `local:` namespace – the keys
local to this UnifiedServer.

Returns List[Any]

The python list containing members of the set if it exists. Returns an empty list otherwise.

Example members= store.smembers("example_set_key")

sismember(self, key: str, member: Any, is_global: bool = True) -> bool

Description Checks whether the provided member exists in the target Redis set. Returns True if present,
otherwise False.

Parameters

key (str)
The Redis set key.

members (Any)
The member to be checked within the Redis set.

is_global (bool) [Default is `True`]
If set to `True`, the key is checked from `global:` namespace – the
keys which are replicated to/from other UnifiedServers.
If `False`, the key is checked from `local:` namespace – the keys
local to this UnifiedServer.

Returns (bool)

True if the member exists. False otherwise.

Example exists = store.sismember("example_set_key", "member_n")

ACS RTDI User Guide
Chapter 5 ACS Unified Server

Redis Memory Store SDK for Cross-Cluster Replication

v2.3.0, July 2025 325

get_max_mem_config(self) -> Optional[int]

Description Retrieves the maxmemory configuration for all master nodes in the Redis cluster.

Returns Optional[int]

The total maxmemory of the master nodes if successful, otherwise None.

Example max_mem = store.get_max_mem_config()

set_max_mem_config(self, max_memory: int) -> bool

Description Sets the maxmemory configuration for the Redis cluster, dividing the maxmemory value across
all master nodes.

The max limit to set max mem config is `10380902400` bytes (~ 9.67 GiB)

Parameters

max_memory (int)
The maxmemory value to set (in bytes).

Returns (bool)

True if the maxmemory was set successfully. False otherwise.

Example store.set_max_mem_config("625000000")

ACS RTDI User Guide
Chapter 5 ACS Unified Server
Data Feed Forward

326 v2.3.0, July 2025

 Data Feed Forward
The Data Feed Forward (DFF) feature enables transferring data between Unified Servers. Therefore, this feature is
applicable to those who have multiple Unified Servers set up, whether it be within the same floor, across different
OSATs, or across regions. At the source, the ACS Unified Server collects data from ACS Nexus to first store it locally
and then forwards the data to the destination Unified Server by having the data go through Advantest Cloud.

 Overview
The diagram below presents the architecture of Data Feed Forward.

Figure 5-4. Data Feed Forward

The DFF facilitates seamless, rule-based data transfer between the Unified Servers and cloud service. It ensures efficient
data collection, processing, and delivery while also maintaining transparency and control for users.

Table 5-9. DFF Components

Component Description

Nexus Nexus is an agent to collect the EDL data on ATE workstation and stream the
data into a Unified Server.

ACS RTDI User Guide
Chapter 5 ACS Unified Server

Data Feed Forward

v2.3.0, July 2025 327

Component Description

Nexus TPI The Nexus TPI is a test program interface that users can include in their test
program to interact with DFF services in the ACS Unified Server.

Edge Server A computing edge designed to handle heavy computation tasks

Unified Server—Data Consumer Receives data from the V93K Host Controller or Edge Application and stores
the data in the ACS Unified Server

Unified Server—Rule Matcher Evaluates incoming rules to identify data that matches the specified conditions.
Filters data based on criteria that is defined in SQL-like rules.

Unified Server—Orchestrator Coordinates the operations of various components in the Unified Server,
ensuring data flow.

DFF Cloud—Data Storage Centralized repository for uploading and storing data files securely.

DFF Cloud—Data Service Accepts rules from UI or CLI and routes the rules into the Unified Server.
Provides the interface for UI and CLI to monitor the status of the data transfer.

DFF-cli The command-line interface provides rule management and monitoring of the
data upload and download status.

 Data CLI Tool Requirement
System Requirement

• Linux on x86_64

The dff-cli command line tool is distributed as a single, self-contained executable binary file. It is installed on the Linux
environment. Request the latest version from your Advantest technical contact.

 Data CLI Commands
The dff-cli is a command-line interface designed for managing rules and monitoring the status of data feed forward
operations within Advantest's ACS RTDI infrastructure. This tool allows users to perform various actions, including
retrieving, listing, creating, and deleting DFF rules, as well as accessing and listing data transfer records and schemas.

The dff-cli requires users to authenticate with MyAdvantest and are subject to authorization rules. There are two types of
authentications: browser login and access credentials.

Browser Login
This is the default authentication method. When the CLI program starts, before the given operation is executed, a
MyAdvantest URL will be printed. The user must open the URL on an Internet browser and enter their MyAdvantest
login credentials. After a successful login, a code will be displayed on the DFF UI. The user must copy this code and
paste it on the terminal to proceed with the selected operation.

Access Credentials
This authentication method was designed to be more convenient for automated executions and for users who don't have
access to an Internet browser. To use access credentials, the user must specify either --username or --username and
--password arguments. For example:

dff-cli --username john.doe@advantest.com --password abc123#* list rules

ACS RTDI User Guide
Chapter 5 ACS Unified Server
Data Feed Forward

328 v2.3.0, July 2025

If only –username is provided, the password will be obtained using a prompt.

Username is the user email registered on MyAdvantest. Password is a random string generated by DFF that can be
obtained on the DFF UI in the user section (at the top right corner of the screen). Note that the password is not the user
password on MyAdvantest.

The dff-cli supports four main commands, as described below. Further details on these commands are available in the
subsections that follow.

• Get
Get a rule, data transfer record and schema from cloud storage.

• List
Lists rules, data transfer records and schemas by specific query parameters

• Create
Create a rule by filling the parameters.

• Delete
Delete a rule by specifying the name of rule

 Get Commands
These commands fetch specific resources by ID.

Get Rule
dff-cli get rule <id>

Get data transfer record
dff-cli get data-transfer-record <id>

Get Schema
dff-cli get schema <id>

 List Commands
These commands display available resources with optional filters.

List Rules
dff-cli list rules [--page <page>] [--pageSize <size>] [--sourceUnifiedServer <name>] [-
-destinationUnifiedServer <name>] [--sourceSchema <schema>] [--destinationSchema
<schema>]

Optional Filters --page: Specify the page of results to retrieve (default: 1).

--pageSize: Number of results per page (default: 10).

--sourceUnifiedServer: Filter by the name of the source server uploading data.

--destinationUnifiedServer: Filter by the name of the destination server downloading data.

--sourceSchema: Filter by the source metadata schema name.

--destinationSchema: Filter by the destination metadata schema name.

ACS RTDI User Guide
Chapter 5 ACS Unified Server

Data Feed Forward

v2.3.0, July 2025 329

List Data Transfer Records
dff-cli list data-transfer-records [--page <page>] [--pageSize <size>] [--transferType
<type>] [--unifiedServerName <name>] [--ruleName <name>] [--metadataSchema <schema>] [--
status <status>]

Optional Filters --page: Specify the page of results to retrieve (default: 1).

--pageSize: Number of results per page (default: 10).

--transferType: Filter by type of transfer (e.g., upload, download).

--unifiedServerName: Filter by the Unified Server name.

--ruleName: Filter by the name of the rule associated with the record.

--metadataSchema: Filter by the metadata schema name.

--status: Filter by the status of the data transfer (e.g., uploading, uploaded, Downloading,
Downloaded).

List Schemas
dff-cli list schemas [--page <page>] [--pageSize <size>]

Optional Filters --page: Specify the page of results to retrieve (default: 1).

--pageSize: Number of results per page (default: 10).

 Create Command
This command creates new rules.

Create Rule
dff-cli create rule <ruleName> [--sus <sourceUnifiedServer>] [--dus
<destinationUnifiedServer>] [--ss <sourceSchema>] [--ds <destinationSchema>] [-f
<filter>] [-t <TTL>]

Arguments <ruleName>: Unique name for the rule (Required).

--sus, --sourceUnifiedServer: Name of the Unified Server uploading the data.

--dus, --destinationUnifiedServer: Name of the Unified Server downloading the data.

--ss, --sourceSchema: Name of the source metadata schema.

--ds, --destinationSchema: Name of the destination metadata schema.

-f, --filter : SQL filter against the source metadata. Example: SELECT * FROM SCHEMA_1
WHERE LOT_ID = 'XYZ' to get data associated with the SCHEMA_1 metadata schema and
matching the LOT_ID specification. Note that SCHEMA_1 must exist in the schema database
and columns after WHERE must exist in the schema.

ACS RTDI User Guide
Chapter 5 ACS Unified Server
Data Feed Forward

330 v2.3.0, July 2025

 Delete Command
This command deletes a rule according to the rule name.

Delete Rule
dff-cli delete rule <ruleName>

Argument <ruleName>: Unique name for the rule (Required).

 DFF UI
The DFF UI is the main interface through which users interact with the Data Feed Forward solution. The DFF UI is
designed to be intuitive and user-friendly, providing access to key features that support the creation, monitoring, and
management of data transfers throughout the testing process.

 Rules
The Rules page in the Data Feed Forward (DFF) platform provides users a comprehensive interface to manage data
transfer rules. Key functionalities (as illustrated in Figure 5-5) include:

• View Rule List: Display a complete list of existing rules and relevant details.

• Create New Rules: Click the "Create Rule" button to configure and register a new data transfer rule.

• View Rule Details: Click on any rule name to access its detailed configuration and settings.

• Bulk Delete: Select multiple rules using the checkboxes and delete them simultaneously using the trash icon.

• Search Functionality: Use the search bar to quickly find specific rules by name.

Figure 5-5. Rules Tab

ACS RTDI User Guide
Chapter 5 ACS Unified Server

Data Feed Forward

v2.3.0, July 2025 331

 Data Transfers
The Data Transfers page in the Data Feed Forward (DFF) platform provides users a detailed, read-only view of all
executed data transfers. This interface is designed to help monitor and track the history of data movement across clusters.
Key features (as illustrated in Figure 5-6) include:

• Transfer Logs Visualization: Displays a comprehensive list of data transfers, with detailed information as shown
in the figure below. Each transfer event includes both upload and download records, which are organized together
for clarity.

• Rule Linking: Each transfer record includes a link to its associated Rule, enabling users to quickly access
detailed rule configurations.

• Data Usage Tracking: A visual progress bar on the page displays the status of data usage.

• Search Functionality: Users can use the search bar to filter data transfers by ID or rule name for easier
navigation.

Figure 5-6. Data Transfers Tab

ACS RTDI User Guide
Chapter 5 ACS Unified Server
Data Feed Forward

332 v2.3.0, July 2025

 Schemas
The Schemas page enables users to browse all available data schemas associated with a specific Unified Server. All
registered schemas are displayed in a structured format that includes the schema name and content (JSON format).

NOTE: The schema plays an important role in rule creation, as summarized below.

• During rule creation, the available source tables for a given Unified Server are matched against the schemas
listed in this tab.

• The fields available for selection in filter conditions are derived from the columns defined within the
corresponding tables.

Figure 5-7. Schemas Tab

ACS RTDI User Guide
Chapter 5 ACS Unified Server

Data Feed Forward

v2.3.0, July 2025 333

 Admin
The Admin page in the DFF UI is accessible only to administrators and is responsible for managing user permissions
across the platform and displaying the organization in detail. This access management This access management section is
divided into three tabs: Users, Roles, and Groups.

Figure 5-8. Admin – Organization Details

Users Tab
This view lists all platform users and allows fine-grained permission control. It includes the following editable fields:

• CLI Pass Enabled: Toggles the visibility of the user's CLI token for use in the DFF UI.

• Is Admin: Grants or revokes administrator privileges to the user.

• Actions: Opens a permission editor for the user, allowing direct customization of CRUD scopes for each DFF
functionality (e.g., Rules, Data Transfers, Schemas).

Figure 5-9. Admin – Access Management - Users Tab

ACS RTDI User Guide
Chapter 5 ACS Unified Server
Data Feed Forward

334 v2.3.0, July 2025

Roles Tab
Roles define reusable permission sets (scopes) that can be assigned to users via groups. Features include:

• Creating new roles with selected permission scopes.

• Editing existing roles.

• Managing permissions in a centralized and consistent way.

Figure 5-10. Admin – Access Management - Roles Tab

Groups Tab
Groups are containers that bring users and roles together. Group features include:

• User Assignment: Add one or more users to the group.

• Role Assignment: Attach one or more roles to the group.

• Direct Scope Editing: Optionally override or extend user permissions directly within the group without needing
to use a role.

Figure 5-11. Admin – Access Management - Groups Tab

ACS RTDI User Guide
Chapter 5 ACS Unified Server

Data Feed Forward

v2.3.0, July 2025 335

 Notifications
The Notifications tab in the Data Feed Forward (DFF) platform provides a centralized audit trail of all significant system
activities. This feature ensures transparency, traceability, and accountability across all user actions and system events.
The Notifications tab can be accessed by clicking notifications_group located in the Name column of the Admin Group
tab. Key features of the Notifications tab include:

• Activity Log: Displays real-time system events such as:

o Rule creation, modification, or deletion (ruleAdded, ruleDeleted, etc.)
o Data transfer events (e.g., when a transfer starts or completes)
o Any other major actions affecting system operations

• Detailed View: For each notification, the fields are displayed, as shown in

• Search Functionality: Easily filter logs using the search bar to quickly locate specific events or rule changes.

Figure 5-12. Notifications Tab

ACS RTDI User Guide
Chapter 6 C++ Client API Reference
ACSEdgeConn

336 v2.3.0, July 2025

6. C++ Client API Reference
The user test program communicates with the ACS Edge Server through API calls, and the Edge Server provides in-line
inferencing, computing, and machine learning capability to the test program based on the container that is loaded and
executed as part of the test flow. Depending on user preferences, the ACS Edge Server may not have pre-loaded
container images. However, container images can be pulled locally from the ACS Unified Server or directly from the
ACS Container Hub.

 ACSEdgeConn

This Class is used for ACS Edge connection and communication.

 Public Functions

ACSEdgeConn
~ACSEdgeConn()

Description: Destroy the ACSEdgeConn object

setRegHost
void setRegHost(const string registry_hostname)

Description: Set the ACS Container Hub registry Host object. The container registry host is used for creating the
container, creating the volume, and adding the prefix on an image name when pulling the container image. The default
value is nullptr. If the value is nullptr, the container image that is used in imagePull, imageDelete, contianerCreate,
containerCreateStart, and volumeCreate will be added to the Mirror registry URL. If the value is not nullptr, the container
image will be added to the registry URL that is passed into the function. For example, if the value is
"registry.advantest.com," the container image will be pulled from "registry.advantest.com" registry host. If the value is
set to “”, the container image will not have any prefix added.

Parameter Description

registry_hostname The URL for the container registry. If this parameter is an empty string, the
ACS Edge Server will use the mirror container registry (ACS Unified Server).

class ACSEdgeConn

ACS RTDI User Guide
Chapter 6 C++ Client API Reference

ACSEdgeConn

v2.3.0, July 2025 337

setOptTimeout
void setOptTimeout(const long int time)

Description: Set the Opt Timeout object.

Parameter Description

time The operation timeout in seconds.

setConTimeout
void setConTimeout(const long int time)

Description: Set the Con Timeout object.

Parameter Description

time The connection time in seconds.

setProxy
ACSEDGEcode setProxy(const string proxyUrl, const long port)

Description: Set the proxy server URL and port object.

Parameter Description

proxyUrl The URL of the proxy server.

port The port number of the proxy server.

Returns Description

ACSEDGEcode The status code for the client SDK.

setIp
ACSEDGEcode setIp(const string ip_addr)

Description: Set the ACS Edge Server IP address.

Parameter Description

ip_addr The IP address of ACS Edge Server.

Returns Description

ACSEDGEcode The status code for the client SDK.

ACS RTDI User Guide
Chapter 6 C++ Client API Reference
ACSEdgeConn

338 v2.3.0, July 2025

getIp
ACSEDGEcode getIp(string &ip_addr)

Description: Get the ACS Edge Server IP address.

Parameter Description

ip_addr The IP address of ACS Edge Server.

Returns Description

ACSEDGEcode The status code for the client SDK.

modelInit
ACSEDGEcode modelInit(const string container_name, const string data, string &response)

Description: Initialize a model in a running container.

Parameter Description

container_name The name/alias used when the container was created.

data The data passing to the model.

response The response string from ACS Edge server.

Returns Description

ACSEDGEcode The status code for the client SDK.

ACS RTDI User Guide
Chapter 6 C++ Client API Reference

ACSEdgeConn

v2.3.0, July 2025 339

modelPredict
ACSEDGEcode modelPredict(const string container_name, const string data, string
&response)

Description: Run inference in a running container.

Parameter Description

container_name The name/alias used when the container was created.

data The data passing to the model.

response The response string from ACS Edge Server.

Returns Description

ACSEDGEcode The status code for the client SDK.

getServerVersion
ACSEDGEcode getServerVersion(string &response)

Description: Get the ACS Edge Server version information.

Parameter Description

response The response string from ACS Edge Server.

Returns Description

ACSEDGEcode The status code for the client SDK.

getServerSystemUsage
ACSEDGEcode getServerSystemUsage(string &response)

Description: Get the ACS Edge Server system usage.

Parameter Description

response The response string from ACS Edge Server.

Returns Description

ACSEDGEcode The status code for the client SDK.

ACS RTDI User Guide
Chapter 6 C++ Client API Reference
ACSEdgeConn

340 v2.3.0, July 2025

getRunningContainers
ACSEDGEcode getRunningContainers(string &response)

Description: Get the list of running containers.

Parameter Description

response The response string from ACS Edge Server.

Returns Description

ACSEDGEcode The status code for the client SDK.

getContainerStatus
ACSEDGEcode getContainerStatus(const string container_name, string &response)

Description: Stores the state of the container in response string. The stored state can be one of either paused, created,
restarting, running, removing, exited, or dead.

Parameter Description

container_name The name/alias used when the container was created.

response The response string from ACS Edge Server.

Returns Description

ACSEDGEcode The status code for the client SDK.

ACS RTDI User Guide
Chapter 6 C++ Client API Reference

ACSEdgeConn

v2.3.0, July 2025 341

imagePull
ACSEDGEcode imagePull(const string image_name, const string tag, const string username,
const string password, const string manifest_filePath, string &response)

Description: Pull a docker image from the ACS Container Hub registry into the ACS Edge Server.

Parameter Description

image_name The name of the image in the ACS Container Hub registry.

tag The tag of the image. The default value is "latest."

username The username to be used to log in to the ACS Container Hub registry.

password The password to be used to log in to the ACS Container Hub registry.

manifest_filePath The path of the manifest file.

response The response string from ACS Edge Server.

Returns Description

ACSEDGEcode The status code for the client SDK.

ACS RTDI User Guide
Chapter 6 C++ Client API Reference
ACSEdgeConn

342 v2.3.0, July 2025

imagePull
ACSEDGEcode imagePull(const string image_name, const string tag, const string username,
const string password, string &response)

Description: Pull a docker image from the ACS Container Hub registry into the ACS Edge Server.

Parameter Description

image_name The name of the image in the ACS Container Hub registry.

tag The tag of the image. The default value is "latest."

username The username to be used to log in to the ACS Container Hub registry.

password The password to be used to log in to the ACS Container Hub registry.

response The response string from ACS Edge Server.

Returns Description

ACSEDGEcode The status code for the client SDK.

imagePull
ACSEDGEcode imagePull(const string image_name, const string tag, const string
manifest_filePath, string &response

Description: Pull a docker image from the ACS Container Hub registry into the ACS Edge Server.

Parameter Description

image_name The name of the image in the ACS Container Hub registry.

tag The tag of the image. The default value is "latest."

manifest_filePath The path of the manifest file.

response The response string from ACS Edge Server.

Returns Description

ACSEDGEcode The status code for the client SDK.

ACS RTDI User Guide
Chapter 6 C++ Client API Reference

ACSEdgeConn

v2.3.0, July 2025 343

imagePull
ACSEDGEcode imagePull(const string image_name, const string tag, string &response)

Description: Pull a docker image from the ACS Container Hub registry into the ACS Edge Server.

Parameter Description

image_name The name of the image in the ACS Container Hub registry.

tag The tag of the image. The default value is "latest."

response The response string from ACS Edge Server.

Returns Description

ACSEDGEcode The status code for the client SDK.

imageLoad
ACSEDGEcode imageLoad(const string image_file_path, string &response)

Description: Loads a docker image from a tar file into the ACS Edge Server.

NOTE: By default, this function is not supported. For support of this function, contact your Advantest representative.

Parameter Description

image_file The name path of the tar file

response The response string from ACS Edge Server.

ACS RTDI User Guide
Chapter 6 C++ Client API Reference
ACSEdgeConn

344 v2.3.0, July 2025

imageDelete
ACSEDGEcode imageDelete(const string image_name, const string tag, string &response)

Description: Delete an image in the ACS Edge Server.

Parameter Description

image_name The name of the image in the ACS Edge Server.

tag The tag of the image. The default value is "latest."

response The response string from ACS Edge Server.

Returns Description

ACSEDGEcode The status code for the client SDK.

ACS RTDI User Guide
Chapter 6 C++ Client API Reference

ACSEdgeConn

v2.3.0, July 2025 345

imageDelete
ACSEDGEcode imageDelete(const string image_name, string &response)

Description: Delete an image with the "latest" tag in the ACS Edge Server.

Parameter Description

image_name The name of the image in the ACS Edge Server.

response The response string from ACS Edge Server.

Returns Description

ACSEDGEcode The status code for the client SDK.

containerCreate
ACSEDGEcode containerCreate(const string image_name, const string container_name,
ContainerConfig &contConfig, string &response)

Description: Create and start a container using an image (referenced by image_name) and using container_name as the
container name (which can be then referenced by name) and enable the <name> proxy to interact with the container. To
configure the container, a ContainerConfig object is needed to pass into the function.

Parameter Description

image_name The name of the image in the ACS Edge Server.

container_name The name/alias used when the container was created.

contConfig The container configuration class object.

response The response string from ACS Edge Server.

Returns Description

ACSEDGEcode The status code for the client SDK.

ACS RTDI User Guide
Chapter 6 C++ Client API Reference
ACSEdgeConn

346 v2.3.0, July 2025

containerCreate
ACSEDGEcode containerCreate(const string image_name, const string container_name, string
&response)

Description: Create and start a container using an image (referenced by image_name) and using container_name as
the container name (which can be then referenced by name) and enable the <name> proxy to interact with the container.

Parameter Description

image_name The name of the image in the ACS Edge Server.

container_name The name/alias used when the container was created.

response The response string from ACS Edge Server.

Returns Description

ACSEDGEcode The status code for the client SDK.

containerStart
ACSEDGEcode containerStart(const string container_name, string &response

Description: Start a previously created container.

Parameter Description

container_name The name/alias used when the container was created.

response The response string from ACS Edge Server.

Returns Description

ACSEDGEcode The status code for the client SDK.

ACS RTDI User Guide
Chapter 6 C++ Client API Reference

ACSEdgeConn

v2.3.0, July 2025 347

containerCreateStart
ACSEDGEcode containerCreateStart(const string image_name, const string container_name,
ContainerConfig &contConfig, string &response)

Description: Create and start a container using an image (referenced by image_name) and using container_name as
the container name (which can be then referenced by name) and enable the <name> proxy to interact with the container.
The gpu option can be used to enable access to the GPU device for the container. The volume_attach parameter is
used to attach mounted volumes under the /data/ directory within the container. For each volume_attach entry, a
subdirectory under /data/ is created. The ports option can be used to expose container ports.

Parameter Description

image_name The name of image in the ACS Edge Server.

container_name The name/alias used when the container was created.

contConfig The container configuration class object.

response The response string from ACS Edge Server.

Returns Description

ACSEDGEcode The status code for the client SDK.

ACS RTDI User Guide
Chapter 6 C++ Client API Reference
ACSEdgeConn

348 v2.3.0, July 2025

containerCreateStart
ACSEDGEcode containerCreateStart(const string image_name, const string container_name,
string &response)

Description: Create and start a container using an image (referenced by image_name) and using container_name as
the container name (which can be then referenced by name) and enable the <name> proxy to interact with the container.
The gpu option can be used to enable access to the GPU device for the container.

Parameter Description

image_name The name of image in the ACS Edge Server.

container_name The name/alias used when the container was created.

response The response string from ACS Edge Server.

Returns Description

ACSEDGEcode The status code for the client SDK.

containerStop
ACSEDGEcode containerStop(const string container_name, string &response)

Description: Stop a running container.

Parameter Description

container_name The name/alias used when the container was created.

response The response string from ACS Edge Server.

Returns Description

ACSEDGEcode The status code for the client SDK.

ACS RTDI User Guide
Chapter 6 C++ Client API Reference

ACSEdgeConn

v2.3.0, July 2025 349

containerDelete
ACSEDGEcode containerDelete(const string container_name, string &response)

Description: Delete a non-running container.

Parameter Description

container_name The name/alias used when the container was created.

response The response string from ACS Edge Server.

Returns Description

ACSEDGEcode The status code for the client SDK.

getContainerLogs
ACSEDGEcode getContainerLogs(const string container_name, string &response)

Description: Get the logs of a container.

Parameter Description

container_name The name/alias used when the container was created.

response The response string from ACS Edge Server.

Returns Description

ACSEDGEcode The status code for the client SDK.

ACS RTDI User Guide
Chapter 6 C++ Client API Reference
ACSEdgeConn

350 v2.3.0, July 2025

volumeCreate
ACSEDGEcode volumeCreate(const string name, const string image_name, const string tag,
string &response)

Description: Create a volume and copy files from the provided image.

Parameter Description

name The volume name/alias to be used for all references.

image_name The name of the image in the ACS Edge Server.

tag The tag of the image. The default value is "latest."

response The response string from ACS Edge Server.

Returns Description

ACSEDGEcode The status code for the client SDK.

volumeDelete
ACSEDGEcode volumeDelete(const string name, string &response)

Description: Remove a volume from the ACS Edge Server.

Parameter Description

name The volume name/alias to be used for all references.

response The response string from ACS Edge Server.

Returns Description

ACSEDGEcode The status code for the client SDK.

ACS RTDI User Guide
Chapter 6 C++ Client API Reference

ACSEdgeConn

v2.3.0, July 2025 351

containerPurge
ACSEDGEcode containerPurge(const string container_name, string &response)

Description: Stop the container and remove the container, the image, and associated volumes.

Parameter Description

container_name The volume name/alias to be used for all references.

response The response string from ACS Edge Server.

Returns Description

ACSEDGEcode The status code for the client SDK.

post
ACSEDGEcode post(const string container_name, const string path, const map<string,
string> ¶meters, const string data, string &response)

Description: The general HTTP POST function. Several options are provided for sending RESTFul command to the
container interface. The HealthCheck endpoint is used to check the health of the container that has been added to the
container image.

Parameter Description

container_name The name/alias used when the container was created.

path The URL path to the exact location of the container endpoint.

parameters The query parameters to the container interface.

data The data stream fed into the container.

response The response string from ACS Edge Server.

Returns Description

ACSEDGEcode The status code for the client SDK.

ACS RTDI User Guide
Chapter 6 C++ Client API Reference
ACSEdgeConn

352 v2.3.0, July 2025

post
ACSEDGEcode post(const string container_name, const string path, const string data,
string &response)

Description: The general HTTP POST function. Several options are provided for sending RESTFul command to the
container interface.

Parameter Description

container_name The name/alias used when the container was created.

path The URL path to the exact location of the container endpoint.

data The data stream fed into the container.

response The response string from ACS Edge Server.

Returns Description

ACSEDGEcode The status code for the client SDK.

post
ACSEDGEcode post(const string container_name, const string path, const map<string,
string> ¶meters, string &response)

Description: The general HTTP POST function. Several options are provided for sending RESTFul command to the
container interface.

Parameter Description

container_name The name/alias used when the container was created.

path The URL path to the exact location of the container endpoint.

parameters The query parameters to the container interface.

response The response string from ACS Edge Server.

Returns Description

ACSEDGEcode The status code for the client SDK.

ACS RTDI User Guide
Chapter 6 C++ Client API Reference

ACSEdgeConn

v2.3.0, July 2025 353

post
ACSEDGEcode post(const string container_name, const string path, string &response)

Description: The general HTTP POST function. Several options are provided for sending RESTFul command to the
container interface.

Parameter Description

container_name The name/alias used when the container was created.

path The URL path to the exact location of the container endpoint.

response The response string from ACS Edge Server.

Returns Description

ACSEDGEcode The status code for the client SDK.

get
ACSEDGEcode get(const string container_name, const string path, const map<string,
string> ¶meters, string &response)

Description: The general HTTP GET function. Several options are provided for sending RESTFul command to the
container interface.

Parameter Description

container_name The name/alias used when the container was created.

path The URL path to the exact location of the container endpoint.

parameters The query parameters to the container interface.

response The response string from ACS Edge Server.

Returns Description

ACSEDGEcode The status code for the client SDK.

ACS RTDI User Guide
Chapter 6 C++ Client API Reference
ACSEdgeConn

354 v2.3.0, July 2025

get
ACSEDGEcode get(const string container_name, const string path, string &response)

Description: The general HTTP GET function. Several options are provided for sending RESTFul command to the
container interface.

Parameter Description

container_name The name/alias used when the container was created.

path The URL path to the exact location of the container endpoint.

response The response string from ACS Edge Server.

Returns Description

ACSEDGEcode The status code for the client SDK.

deinit
ACSEDGEcode deinit()

Description: The de-initialization function to clear the ACS Edge Instance.

Returns Description

ACSEDGEcode The status code for the client SDK.

getInstance
static ACSEdgeConn &getInstance()

Description: Get the instance object.

Returns Description

ACSEDGEcode The status code for the client SDK.

getInstance
static ACSEdgeConn &getInstance(const string ip_addr)

Description: Get the instance object.

Returns Description

ACSEDGEcode The status code for the client SDK.

ACS RTDI User Guide
Chapter 6 C++ Client API Reference

ContainerConfig

v2.3.0, July 2025 355

 ContainerConfig

This class is used to add different options to configure the container. You can use setOption() method to add
configuration options to the container. This method can be called in a chain. For example:

ContainerConfig cont;
cont.setOption("gpu",true).setOption("hostname","customhostname")

The following options are available for the current version (3.3.x) of the ACS Edge Server.

• gpu
The gpu option can be used to enable access to the GPU device for the container. The value of this option is
boolean value (true or false). If not provided, the container can’t use gpu.

• volume_attach
The volume_attach option is used to attach mounted volumes under the /data/ directory within the container.
For each volume_attach entry, a subdirectory under /data/ is created. The value of the option is a C++ vector of
strings. Each string is the name of the volume to be attached. For example, if the vector contains {“vol1”,”vol2”},
then the volumes /data/0 and /data/1 are attached on the container. By default, the volume is read only. If
you want to write data into volume, add ":rw" after the volume name. For example, if the vector contains
{“vol1:rw”,”vol2”}, then the volume vol1 is read and write, but the volume vol2 is read only.

• ports
The ports option can be used to expose container ports. A list of ports that are exposed on the container is
provided using C++ string vector. Each string is a port number. The ports that are exposed by the ports option
can only be communicated by the SDK post() and get(), which are authorized by the ACS Edge’s mTLS.
Note that a single port is mapped to the default container name endpoint, whereas multiple ports map to endpoint
/<containerName>-<port>. For example, if the container name is "demo" and if the vector contains
{"8001","8002"}, then the container will be exposed on ports 8001 and 8002. The two endpoints generated are
"demo-8001" and "demo-8002". If the vector is empty, then the container will only be exposed on port 8000 as
the default and the endpoint is "demo." If the vector is {"8001"}, the container will be exposed on port 8001 but
the only one endpoint is still "demo."

• publish-ports
The publish-ports option exposes and publishes container ports. A list of ports that are exposed on the container is
provided using C++ string vector. The format of the value is “hostPort:containerPort/protocol.” The protocol can
be tcp, udp, sctp, or dccp. If protocol is missing, the default protocol used is /tcp. For example, if the vector
contains {"8001:8001/tcp","8002:8002/udp}, then the container will be exposed on port 8001 (via tcp
protocol) and port 8002 (via udp protocol) on the Edge Server.

• hostname
The hostname option defines the hostname of the container. If not provided, the default short version of the
container ID will be used instead.

• auto_remove
The auto_remove option can be used to remove the container when it is stopped. The value of the option is a
boolean value (true or false). If not provided, the container will not be removed.

• environment
The environment option can be used to set environment variables inside the container. The value of the option is a
C++ vector of strings. Each string is an environment variable definition. For example, if the vector contains
{"ENV1=VALUE1","ENV2=VALUE2"}, then the following environment variables are set: ENV1=VALUE1
and ENV2=VALUE2. If the vector is empty, then no environment variables are set.

class ContainerConfig

ACS RTDI User Guide
Chapter 6 C++ Client API Reference
ContainerConfig

356 v2.3.0, July 2025

• local
The local option can be used to enable the server to use a local image. If local=True, it ignores the registry value
set on the setRegHost() function and no prefix is added to the image name.

• tester_id
The tester_id option is required when the client tries to create a container on the Edge resilience service in the
ACS Unified Server. The value of the option is a string, which is the hostname of the Workstation.

• metrics_port
The metrics_port option is required when the client tries to create a container on the Edge Server and also wants
to retrieve the metrics data from the container into the RTDI monitoring pipeline. The (integer) value of the
option is the port number of the container that is used to expose the metrics data. For example, if the endpoint is
"demo-app:8000/metrics" then “8000” is the value of the option.

• metrics_path
The metrics_path option is required when the client tries to create a container on the Edge Server and also wants
to retrieve the metrics data from the container into the RTDI monitoring pipeline. The (string) value of the option
is the path of the metrics endpoint. For example, if the endpoint is “demo-app:8000/metrics” then "/metrics" is
the value of the option. The value of the option is a string.

• metrics_scrape_interval
The metrics_scrape_interval option is required when the client tries to create a container on the Edge Server and
also wants to retrieve the metrics data from the container into RTDI monitoring pipeline. The (integer) value of
the option is the interval of the metrics data scraping. The unit of the value is seconds and the default value is 10.

• metrics_scrape_timeout
The metrics_scrape_timeout option is required when the client tries to create a container on the Edge Server and
also wants to retrieve the metrics data from the container into the RTDI monitoring pipeline. The (integer) value
of the option is the timeout of the metrics data scraping. The unit of the value is seconds and the default value is
5.

• restart_policy
The restart policy is required when the client tries to create a container on the Edge Server and also wants to
apply the restart policy in case a Docker container crashes or stops. The value of the option is a string. The
default value is always. This means that the container will always restart (regardless of the exit status) if it is not
provided from the client.

All available options include:

no The container will not restart automatically.
always The container will always restart regardless of the exit status. It will also restart on

system reboot or Docker daemon restart.
unless-stopped Similar to always, but the container will not restart if it was stopped manually.
on-failure The container will restart only if it exits with a non-zero status. This option is typically

used to handle failures in the container's process. Also, the retry count is fixed to 3 and
it is non-changeable.

ACS RTDI User Guide
Chapter 6 C++ Client API Reference

ContainerConfig

v2.3.0, July 2025 357

 Public Function

ContainerConfig()
Description: Construct a new container config object.

~ContainerConfig()
Description: Destroy the container config object.

setOption
ContainerConfig &setOption(const string option, const string value)

Description: Set the option object. The value of the option is a string. The option hostname uses this method to set the
hostname and the restart policy of the container.

Parameter Description

option The container configuration options.

value The string value of the option.

Returns

ContainerConfig& the object reference.

Example Code:

ContainerConfig cont;
string hostname = "customhostname";
string restart_policy = “unless-stopped”;
cont.setOption("hostname",hostname).setOption(“restart_policy”, restart_policy);

ACS RTDI User Guide
Chapter 6 C++ Client API Reference
ContainerConfig

358 v2.3.0, July 2025

setOption
ContainerConfig &setOption(const string option, const char value)

Description: Set the option object. The value of the option is char*.

Parameter Description

option The container configuration options.

value The char* value of the option.

Returns

ContainerConfig& the object reference.

Example Code:

ContainerConfig cont;
cont.setOption("hostname","customhostname");

setOption
ContainerConfig &setOption(const string option, const bool value)

Description: Set the option object. The value is boolean (true or false). The option gpu and auto_remove use this
method to set the value.

Parameter Description

option The container configuration options.

value The boolean value of the option.

Returns

ContainerConfig& the object reference.

Example Code:

ContainerConfig cont;
cont.setOption("gpu",true).setOption("auto_remove",false);

ACS RTDI User Guide
Chapter 6 C++ Client API Reference

ContainerConfig

v2.3.0, July 2025 359

setOption
ContainerConfig &setOption(const string option, vector<string> value)

Description: Set the option object. The value is a string vector. The option volume_attach, ports, publish-ports
and environment use this method to set the value.

Parameter Description

option The container configuration options.

value The vector value of the option.

Returns

ContainerConfig& the object reference.

Example Code:

ContainerConfig cont;
vector<string> publish-ports;
publish-ports.push_back("8001/tcp:8001");
publish-ports.push_back("8002/udp:8002");
vector<string> ports;
ports.push_back("8003");
ports.push_back("8004");
vector<string> environment;
environment.push_back("ENV1=VALUE1");
vector<string> volumes;
volumes.push_back("volume1");
cont.setOption("publish-ports",publish-ports)
 .setOption("ports",ports).setOption("environment",environment)
 .setOption("volume_attach",volumes);

ACS RTDI User Guide
Chapter 6 C++ Client API Reference
ContainerConfig

360 v2.3.0, July 2025

setOption
ContainerConfig &setOption(const string option, const int value)

Description: Set the option object.

Parameter Description

option The container configuration options.

value The integer value of the option.

Returns

ContainerConfig& the object reference.

toString
string toString()

Description: Return container configuration parameter in a string. The string data includes all configuration information.

Example Code:

ContainerConfig cont;
string hostname = "customhostname";
cont.setOption("hostname",hostname);
string config = cont.toString();

getErrorCode
ACSEDGEcode getErrorCode()

Description: Return the container configuration error code.

Returns Description

ACSEDGEcode The error code.

Example Code:

ContainerConfig cont;
string hostname = "customhostname";
cont.setOption("hostname",hostname);
ACSEDGEcode err = cont.getErrorCode();

ACS RTDI User Guide
Chapter 6 C++ Client API Reference

ACSEDGEcode

v2.3.0, July 2025 361

 ACSEDGEcode

This is the Help function to parse the response string from the ACS Edge Server compatible container. The response
string is formatted by Json. There are two fields in the response string; msg and data. The msg (message) field is
followed by the customized message that was applied in ACS Edge container. The data field is followed by the
prediction/computation result, which is encoded by base64 so the result_parser function can parse the response
string and return the value of the specified field name.

@param name the field name in the json formatted response data from ACS Edge Server.

ACS Edge Server
Param response: The json-formatted response data from the ACS Edge server.

Return: The string extracted from the json data string based on the name parameter. All possible status codes
are included in libACSEdgeConn. Future versions may return other values. Never remove any
values. The return codes should remain the same.

Enumerator values for ACSEDGEcode are listed in Table 6-1 below.

Table 6-1. ACSEDGEcode Enumerators

Enumerators Additional Information

ACSE_OK = 0

ACSE_UNSUPPORTED_PROTOCOL = 1

ACSE_FAILED_INIT = 2

ACSE_URL_MALFORMAT = 3

ACSE_NOT_BUILT_IN = 4

ACSE_COULDNT_RESOLVE_PROXY = 5

ACSE_COULDNT_RESOLVE_HOST = 6

ACSE_COULDNT_CONNECT = 7

ACSE_WEIRD_SERVER_REPLY = 8

ACSE_REMOTE_ACCESS_DENIED = 9 A service was denied by the server due to lack of access.
(When login fails this is not returned.)

ACSE_FTP_ACCEPT_FAILED = 10

ACSE_FTP_WEIRD_PASS_REPLY = 11

ACSE_FTP_ACCEPT_TIMEOUT = 12 Timeout occurred accepting the server.

ACSE_FTP_WEIRD_PASV_REPLY = 13

ACSE_FTP_WEIRD_227_FORMAT = 14

ACSE_FTP_CANT_GET_HOST = 15

ACSE_HTTP2 = 16 There is a problem in the http2 framing layer.

enum ACSEDGECode

ACS RTDI User Guide
Chapter 6 C++ Client API Reference
ACSEDGEcode

362 v2.3.0, July 2025

Enumerators Additional Information

ACSE_FTP_COULDNT_SET_TYPE = 17

ACSE_PARTIAL_FILE = 18

ACSE_FTP_COULDNT_RETR_FILE = 19

ACSE_OBSOLETE20 = 20 Not used.

ACSE_QUOTE_ERROR = 21 Quote command failure.

ACSE_HTTP_RETURNED_ERROR = 22

ACSE_WRITE_ERROR = 23

ACSE_OBSOLETE24 = 24 Not used

ACSE_UPLOAD_FAILED = 25 Failed to upload command.

ACSE_READ_ERROR = 26 Could not open file or could not read from file.

ACSE_OUT_OF_MEMORY = 27 OUT_OF_MEMORY may sometimes indicate a conversion error
instead of a memory allocation error if DOES_CONVERSIONS is
defined.

ACSE_OPERATION_TIMEDOUT = 28 The timeout time was reached.

ACSE_OBSOLETE29 = 29 Not used.

ACSE_FTP_PORT_FAILED = 30 FTP PORT operation failed.

ACSE_FTP_COULDNT_USE_REST = 31 The REST command failed.

ACSE_OBSOLETE32 = 32 Not used.

ACSE_RANGE_ERROR = 33 RANGE command did not work.

ACSE_HTTP_POST_ERROR = 34

ACSE_SSL_CONNECT_ERROR = 35 Something went wrong when connecting with SSL.

ACSE_BAD_DOWNLOAD_RESUME = 36 Could not resume download.

ACSE_FILE_COULDNT_READ_FILE = 37

ACSE_LDAP_CANNOT_BIND = 38

ACSE_LDAP_SEARCH_FAILED = 39

ACSE_OBSOLETE40 = 40 Not used.

ACSE_FUNCTION_NOT_FOUND = 41 Not used.

ACSE_ABORTED_BY_CALLBACK = 42

ACSE_BAD_FUNCTION_ARGUMENT = 43

ACSE_OBSOLETE44 = 44 Not used.

ACSE_INTERFACE_FAILED = 45 OPT_INTERFACE failed.

ACSE_OBSOLETE46 = 46 Not used.

ACSE_TOO_MANY_REDIRECTS = 47 Catching endless re-direct loops.

ACS RTDI User Guide
Chapter 6 C++ Client API Reference

ACSEDGEcode

v2.3.0, July 2025 363

Enumerators Additional Information

ACSE_UNKNOWN_OPTION = 48 User specified an unknown option.

ACSE_TELNET_OPTION_SYNTAX = 48 Malformed telnet option.

ACSE_OBSOLETE50 = 50 Not used.

ACSE_OBSOLETE51 = 51 Not used.

ACSE_GOT_NOTHING = 52 When there is a specific error.

ACSE_SSL_ENGINE_NOTFOUND = 53 SSL crypto engine not found.

ACSE_SSL_ENGINE_SETFAILED = 54 Cannot set SSL crypto engine as default.

ACSE_SEND_ERROR = 55 Failed sending network data.

ACSE_RECV_ERROR = 56 Failure in receiving network data.

ACSE_OBSOLETE57 = 57 Not used.

ACSE_SSL_CERTPROBLEM = 58 There is a problem with the local certificate.

ACSE_SSL_CIPHER = 59 Could not use specified cipher.

ACSE_PEER_FAILED_VERIFICATION = 60 The peer’s certificate or fingerprint failed verification.

ACSE_BAD_CONTENT_ENCODING = 61 Unrecognized or bad encoding.

ACSE_LDAP_INVALID_URL = 62 Invalid LDAP URL.

ACSE_FILESIZE_EXCEEDED = 63 Maximum file size is exceeded.

ACSE_USE_SSL_FAILED = 64 Requested FTP SSL level failed.

ACSE_SEND_FAIL_REWIND = 65 Sending the data requires a rewind that failed.

ACSE_SSL_ENGINE_INITFAILED = 66 Failed to initialize ENGINE.

ACSE_LOGIN_DENIED = 67 User, password, or similar was not accepted and login failed.

ACSE_TFTP_NOTFOUND = 68 File not found on the server.

ACSE_TFTP_PERM = 69 There is a permission problem on server.

ACSE_REMOTE_DISK_FULL = 70 Out of disk space on the server.

ACSE_TFTP_ILLEGAL = 71 Illegal TFTP operation.

ACSE_TFTP_UNKNOWNID = 72 Unknown transfer ID.

ACSE_REMOTE_FILE_EXISTS = 73 File already exists.

ACSE_TFTP_NOSUCHUSER = 74 No such user.

ACSE_CONV_FAILED = 75 Conversion Failed.

ACSE_CONV_REQD = 76

ACSE_CACERT_BADFILE = 77 Could not load CACERT file. It is either missing or in the wrong
format.

ACSE_REMOTE_FILE_NOT_FOUND = 78 remote file not found

ACS RTDI User Guide
Chapter 6 C++ Client API Reference
ACSEDGEcode

364 v2.3.0, July 2025

Enumerators Additional Information

ACSE_SSH_ERROR = 79 There is an error from the SSH layer.

ACSE_SSL_SHUTDOWN_FAILED = 80 Failed to shut down the SSL connection.

ACSE_AGAIN = 81 Socket is not ready for send/receive. Wait until it is ready and try
again.

ACSE_SSL_CRL_BADFILE = 82 Could not load CRL file. It is either missing or in the wrong
format.

ACSE_SSL_ISSUER_ERROR = 83 Issuer check failed.

ACSE_FTP_PRET_FAILED = 84 A PRET command failed

ACSE_RTSP_CSEQ_ERROR = 85 There is a mismatch of RTSP CSeq numbers.

ACSE_RTSP_SESSION_ERROR = 86 There is a mismatch of RTSP Session Ids.

ACSE_FTP_BAD_FILE_LIST = 87 Unable to parse the FTP file list.

ACSE_CHUNK_FAILED = 88 A chunk callback reported error occurred.

ACSE_NO_CONNECTION_AVAILABLE = 89 No connection available. The session will be queued.

ACSE_SSL_PINNEDPUBKEYNOTMATCH = 90 The specified pinned public key did not match.

ACSE_SSL_INVALIDCERTSTATUS = 91 Invalid certificate status.

ACSE_HTTP2_STREAM = 92 There is a stream error in HTTP/2 framing layer.

ACSE_RECURSIVE_API_CALL = 93 An API function was called from inside a callback.

ACSE_AUTH_ERROR = 94 An authentication function returned an error.

ACSE_HTTP3 = 95 There is a problem with HTTP/3 layer.

ACSE_QUIC_CONNECT_ERROR = 96 There is a QUIC connection error.

ACSE_IN_NUM_OUT_OF_RANGE = 97 Input number is out of range.

ACSE_NO_CONTAINER_NAME = 98 A container NAME has not been set.

ACSE_NO_IMAGE_NAME = 99 An image NAME has not been set.

ACSE_NO_VOLUME_NAME = 100 A volume NAME has not been set.

ACSE_SERVER_API_ERROR = 101 There is an error from server.

ACSE_INVALID_PORT_NUMBER = 102 Invalid Port Number.

ACSE_EMPTY_PROXY_URL = 103 There is an empty string on the proxy URL.

ACSE_EMPTY_IP_INPUT = 104 There is an empty IP address input on the setIP function.

ACSE_IP_NOT_FOUND = 105 ACSEdge IP address not found.

ACSE_MANIFEST_FILE_NO_FOUND = 106 Manifest file not found.

ACSE_CONTAINER_NAME_CONFLICT = 107 There is a container name conflict.

ACSE_INVALID_ENVIRONMENT = 108 Invalid environment variable definition

ACS RTDI User Guide
Chapter 6 C++ Client API Reference

Establishing Connection to the ACS Edge Server

v2.3.0, July 2025 365

 Establishing Connection to the ACS Edge Server
This tutorial uses SmarTest 7 examples to demonstrate the procedure for establishing a connection to ACS Edge Server.
Similar steps will apply for other C++ platforms.

1. Create a connection object.
Include the ACSEdgeConn.hpp header file into the C++ program.

#include "ACSEdgeConn.hpp"

Create an object to interface with the ACS Edge Server. For the V93000 test system, it is not necessary to specify an IP
address, but if the V93000 Workstation does not have a local connection with the ACS Edge Server (such as for Cloud
testing) or the client SDK is used on a system other than the V93000, the IP address must be provided.

//V93000 system with ACS Edge Server
ACSEdgeConn& conn = ACSEdgeConn::getInstance();

//Non V93000 system with ACS Edge Server or V93000 system with ACS Edge cloud
instance
ACSEdgeConn& conn = ACSEdgeConn::getInstance("10.10.120.2");

2. Configure the proxy server (optional).
If a proxy server exists between the ACS Edge Server and the host controller, call the setProxy() API to configure the
proxy server. This option is most commonly used in a development environment where the user wants to access an ACS
Edge Server (placed outside of the facility network) through a proxy server. In a production environment, the proxy is
not necessary since a local connection exists between the test system and the ACS Edge Server.

There are three types of proxy servers available: HTTP, HTTPS and SOCKS. The proxy string is prefixed with
[scheme]:// to specify the proxy type. The following example shows the setup for three different proxy servers with an IP
of 196.168.555.555 and port 6666.

ACSEdgeConn& conn = ACSEdgeConn::getInstance();
conn.setProxy("http://196.168.555.555",6666L);
conn.setProxy("https://196.168.555.555",6666L);
conn.setProxy("socks4://196.168.555.555",6666L);
conn.setProxy("socks4a://196.168.555.555",6666L);
conn.setProxy("socks5://196.168.555.555",6666L);
conn.setProxy("socks5h://196.168.555.555",6666L);

ACS RTDI User Guide
Chapter 6 C++ Client API Reference
Establishing Connection to the ACS Edge Server

366 v2.3.0, July 2025

3. Connect to the ACS Edge Server
Creating an interface object does not establish a connection to the ACS Edge Server. The connection is established
through interface object method calls. An easy way to test the connection is by fetching the version information from the
server:

ACSEdgeConn& conn = ACSEdgeConn::getInstance();

string response;
ACSEDGEcode status_code = conn.getServerVersion(response);

if (status_code == 0){
 cout << response << endl;
}
else{
 cout << "Error code: " << (int)status_code << " at " <<__FILE__ << endl;
 cout << response << endl;
}

All methods return an ACSEDGEcode result that indicates the status of the connection. If the result is anything other
than ACSE_OK, an error has occurred.

4. Setting Timeout
There are two timeout configurations for communication between client and server.

• Connection timeout
The maximum time (in seconds) allowed to connect to the server. The default is 15 seconds.

• Operation timeout
The maximum time (in seconds) allowed to complete any operations. The default is 15 seconds. For example,
when pulling a large image (1GB) from a container registry, if the image pull operation cannot complete within
the time frame, the imagePull() function will return status code 28, meaning OPERATION_TIMEOUT.

ACSEdgeConn& conn = ACSEdgeConn::getInstance();
conn.setRegHost("hub.demohub.io");
conn.setOptTimeout(2000L);
conn.setConnTimeout(2000L);
string response;
ACSEDGEcode status_code = conn.imagePull("demoimage","v2","admin","pass",response);

ACS RTDI User Guide
Chapter 6 C++ Client API Reference

Container Deployment Example

v2.3.0, July 2025 367

 Container Deployment Example
After creating an ACSEdgeConn instance using the guidelines from Establishing Connection to the ACS Edge Server,
You can begin deploying your container into the ACS Edge Server. The full procedure for how to deploy a container into
the ACS Edge Server is provided with examples below. In the examples, dummy data is used for the parameters.

1. Pull an image from the container registry.

ACSEdgeConn& conn = ACSEdgeConn::getInstance();
conn.setRegHost("hub.advantest.com");
string image_name = "smart-image";
string tag = "latest";
string username = "smartguy";
string password = "YouNeverForget"
string manifest_file_path = "./manifest.jwt";

string response;
// pull an image from cloud container registry
conn.setRegHost("hub.advantest.com");
ACSEDGEcode status_code = conn.imagePull(image_name,tag,username, password,response);
// pull an image from cloud container registry with Manifest
//ACSEDGEcode status_code = conn.imagePull(image_name,tag,username,password,
// manifest_file_path,response);
// pull an image from mirror container registry
// conn.setRegHost(nullptr);
//ACSEDGEcode status_code = conn.imagePull(image_name,tag, response);
// pull an image from mirror container registry with Manifest
//ACSEDGEcode status_code = conn.imagePull(image_name,tag,manifest_file_path,response);

if (status_code == 0){
 cout << response << endl;
}
else{
 cout << "Error code: " << (int)status_code << " at " <<__FILE__ << endl;
 cout << response << endl;
}

In the above example, it is assumed you are using a V93K RH7 system and creating an ACSEdgeConn instance without
specifying the ACS Edge Server IP address. If using a different test system or if using a cloud instance, add the IP
parameters into the ACSEdgeConn instance.

The container registry URL must be specified by using setRegHost() so that the ACS Edge Server knows which
container registry it will communicate with. Afterward, you can call the imagePull() function by passing image_name,
tag, username, password and the response reference into it. If there is a mirror server used on your test floor, the
username and password are not needed.

If the ACS Edge Server is activated with the Application Authorization feature, the imagePull function needs another
parameter to specify the manifest file path. The manifest file provides the list of images that are authorized to be pulled
from the registry and executed by the ACS Edge Server. If the user is not authorized to pull the image or the image is not
in the manifest file, the imagePull() function will return an error.

The imagePull() will return the status code and response string from the ACS Edge Server for this communication. If
everything is good, after the imagePull() function, the ACS Edge server pulls an image called smart-image:latest from
the ACS Container Hub ("registry.advantest.com").

ACS RTDI User Guide
Chapter 6 C++ Client API Reference
Container Deployment Example

368 v2.3.0, July 2025

2. Create and start a container.
The next step is to create a container based on the image that was just pulled. There are several options you can use to
configure your container. You can add options in the ContainerConfig Object. For example, you can add gpu capability,
expose ports on containers, and mount docker volumes with the container. The ContainerConfig Object is fed into
containerCreate() or containerCreateStart() functions. For configuration options and functions, refer to the
ACS Edge Container Configuration.

The example below shows the full procedure for how to configure the container by publishing the ports on the container.
The host controller can communicate with the container via these port directly by using the same protocol.

string container_name = "smart-container";
ContainerConfig contConfig;
vector<string> ports;
// Publish port 8080 with tcp protocol on container/Edge Server to host controller,
// host controller can communicate with the container via port 8080 directly by using
any tcp protocol.
ports.push_back("8080/tcp:8080");
// Mount a docker volume with the container, the volume will be created in the
container's filesystem.
vector<string> volumes;
volumes.push_back("vol1");
// Add gpu capability to the container. The container will be able to use the gpu
device.
contConfig.setOption("gpu","true").setOption("publish-
ports",ports).setOption("volume_attach",volumes).setOption("hostname","demo");
status_code =
conn.containerCreateStart(image_name,container_name,contConfig,response);
string EdgeIp;
status_code = conn.getIp(EdgeIp);

// Using Curl http post to the container's port 8080 as an example.
// But don't have to use http method and libcurl to build the connection,
// Use your tcp Application-layer protocols to communicate with the container
directly,
// It depends on the interface of your app in the container.
string url = "http://" + EdgeIp + ":8080/" + container_name;
CURL *curl;
CURLcode res;

/* In windows, this will init the winsock stuff */
curl_global_init(CURL_GLOBAL_ALL);

/* get a curl handle */
curl = curl_easy_init();
if(curl) {
 /* First set the URL that is about to receive our POST. This URL can
 just as well be a https:// URL if that is what should receive the
 data. */
 curl_easy_setopt(curl, CURLOPT_URL, url.c_str();
 /* Now specify the POST data */
 curl_easy_setopt(curl, CURLOPT_POSTFIELDS, "name=daniel&project=curl");

 /* Perform the request, res will get the return code */
 res = curl_easy_perform(curl);

ACS RTDI User Guide
Chapter 6 C++ Client API Reference

Container Deployment Example

v2.3.0, July 2025 369

 /* Check for errors */
 if(res != CURLE_OK)
 fprintf(stderr, "curl_easy_perform() failed: %s\n",
 curl_easy_strerror(res));

 /* always cleanup */
 curl_easy_cleanup(curl);
}
curl_global_cleanup();

if (status_code == 0){
 cout << response << endl;
}
else{
 cout << "Error code: " << (int)status_code << " at " <<__FILE__ << endl;
 cout << response << endl;
}

This next example shows the full procedure for how to configure the container by exposing the ports on the container.
Unlike the first example, in the below example the container will not be able to communicate with the host controller
directly. You will have to use Advantest http protocol to communicate with the container.

string container_name = "smart-container";
ContainerConfig contConfig;
vector<string> ports;
// Publish port 8080 with tcp protocol on container/Edge Server to host controller,
// host controller can communicate with the container via port 8080 directly by using
any tcp protocol.
ports.push_back("8001");
ports.push_back("8002");
// Mount a docker volume with the container, the volume will be created in the
container's filesystem.
vector<string> volumes;
volumes.push_back("vol1");
// Add gpu capability to the container. The container will be able to use the gpu
device.
contConfig.setOption("gpu","true").setOption("ports",ports).setOption("volume_attach"
,volumes).setOption("hostname","demo");
status_code =
conn.containerCreateStart(image_name,container_name,contConfig,response);
// Two endpoints are generated for the ports exposed on the container.
status_code = conn.post(container_name + "-8001","init",response);
status_code = conn.post(container_name + "-8002","predict",response);

if (status_code == 0){
 cout << response << endl;
}
else{
 cout << "Error code: " << (int)status_code << " at " <<__FILE__ << endl;
 cout << response << endl;

ACS RTDI User Guide
Chapter 6 C++ Client API Reference
Container Deployment Example

370 v2.3.0, July 2025

}

3. Communicate with a container.
It is assumed that a container has successfully been created and started in the ACS Edge Server, and the container is
running an http server which is listening from client. If your application is an ACS Edge compatible ML application, we
provide two functions: modelInit() and modelPredict(). If the application is fully user-customized, Advantest
provides general HTTP method wrapper functions: post() and get(). For additional information on these functions,
refer to the C++ Client API Reference.

In the below example, the post() function is used.

response.clear();
string path = "v2/models/MNIST/infer";
string data = "{\"id\":\"1\",\"inputs\":[{\"name\":\"input\",\"shape\":[1,2,28],"
 "\"datatype\":\"UINT8\",\"data\":"
 "[[0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0],"
 "[0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0]] }],"
 "\"outputs\":[{\"name\":\"output\"}] }";
 "\"outputs\":[{\"name\":\"output\"}] }";
status_code = conn.post(container_name,path,data,response);

if (status_code == 0){
 cout << response << endl;
}
else{
 cout << "Error code: " << (int)status_code << " at " <<__FILE__ << endl;
 cout << response << endl;
}

4. Purge container and image.
The container and image created contain the customer’s IP or data. Due to security concerns, it is recommended that you
purge the container and image if you do not plan to use the container or image anymore, even though a high security
connection is provided between the client and the ACS Edge Server. Purging non-used containers and images is simply a
good practice.

There are several functions for purging a container and image. You can call containerStop(), containerDelete()
and imageDelete() to delete the container and image. Or you can use just one function, containerPurge(), to
delete the container and its associated image. In the example below, containerPurge() is used.

response.clear();
status_code = conn.containerPurge(container_name,response);

if (status_code == 0){
 cout << response << endl;
}
else{
 cout << "Error code: " << (int)status_code << " at " <<__FILE__ << endl;
 cout << response << endl;
}

ACS RTDI User Guide
Chapter 7 ACS RTDI Troubleshooting

Container Deployment Example

v2.3.0, July 2025 371

7. ACS RTDI Troubleshooting
This troubleshooting section is intended to address possible hardware and software connectivity, set-up, and
configuration issues that may be encountered during system integration and through daily operation. This guide is not all-
inclusive and may not cover unique issues that arise due to a specific set of circumstances.

Use the links below to jump to the desired platform for troubleshooting issues.

• ACS Edge Server Troubleshooting
• ACS Unified Server Troubleshooting
• ACS Container Hub Troubleshooting

ACS RTDI User Guide
Chapter 7 ACS RTDI Troubleshooting
ACS Edge Server Troubleshooting

372 v2.3.0, July 2025

 ACS Edge Server Troubleshooting
If the Edge Server faces IP connectivity issues with the Host Controller, follow the troubleshooting suggestions
recommended in the table below in the order they appear. To resolve the issue, it may be necessary to perform one or
more of the specified suggestions.

If the problem persists after performing all the suggested troubleshooting actions indicated in the list below, contact your
Advantest representative.

Suggestions Procedure

Check Physical
Setup 1. Check if the PDU power cord is plugged into the designated wall outlet.

2. Open the mini-rack back panel and check if all ethernet and power cables are securely
connected.

3. Confirm that the Ethernet cable is connected between the Host Controller and the Edge
Server.

Confirm Power 1. Confirm that the wall outlet is outputting the required power.

2. Check if mini-rack fan is powered ON. The fan should always be ON, as there is no
on/off switch for mini-rack fan.

3. Check if the Edger Server is powered ON.

4. Check if the Host Controller is powered ON.

Manually Power ON
Server

The Edge Server is configured to power ON and boot up automatically when connected to a
power source. If the server does not automatically start, it can be manually powered ON as
outlined below.

1. Use the mini-rack key to open the front panel.

2. Remove front bezel on the mini-rack.

3. Press Power On button (#1 in the image below) on Edge Server.

4. Allow 2 minutes for the server to complete the bootup sequence.

5. After the server is fully booted, check the state of the LED indicators and observe that
they appear as indicated in the following table.

1
2

3
4

ACS RTDI User Guide
Chapter 7 ACS RTDI Troubleshooting

ACS Edge Server Troubleshooting

v2.3.0, July 2025 373

6. If the server does not power ON, check Edge Server Power Supply module.

LED Indicator Desired State Description
1 Power Button

and LED
Solid Green System ON

2 UID Button and
LED

OFF UID is deactivated and iLO Service
Port is ready for use

3 Health LED Solid Green Normal
4 NIC status LED Flashing Green Network active

Check Power
Supply Module

If the Edge Server will not power on automatically or manually, check the power supply
module.

1. Use the mini-rack key to open the back panel.

2. Verify the Edge Server power cable is connected securely to Edge Server and PDU.

3. Verify the PDU power cable is connected securely to the PDU and wall outlet.

4. Verify the wall outlet has power.

5. Locate the power supply at the rear of the Edge Server (usually located on right side
when observing from rear).

6. Verify that the power LED on the power supply is illuminated (solid green) while the
power cable is connected and the power is ON. See image below.

7. If the power LED on the power supply is not illuminated:

a. Check for any loose power cables and secure if necessary.

b. Check for proper supply voltage and current from wall outlet.

c. Plug another device into the grounded power outlet to be sure the outlet works.

NOTE: Ensure that the power source meets applicable standards.

d. Replace the power cord with a known functional power cord to be sure it is not
faulty.

e. Disconnect the power cable from the power supply for 3 minutes, then reconnect
it back.

Reboot System
Setup

To reboot the system setup, follow the steps below:

1. Verify that the Ethernet cable is connected between Host Controller and Edge Server.

2. Reboot the Host Controller.

3. Log in to the Host Controller and wait 2 minutes.

ACS RTDI User Guide
Chapter 7 ACS RTDI Troubleshooting
ACS Edge Server Troubleshooting

374 v2.3.0, July 2025

4. Reboot the Edge Server and wait 3 minutes.

Check Physical
Ethernet
Connectivity

To check physical Ethernet connectivity between the Host Controller and the Edge Server,
follow the steps below:

1. Verify the Host Controller and the Edge Server are powered ON.

2. Verify the Ethernet cable is connected between the Host Controller and the Edge Server.

3. Check the rear of the Edge Server and verify that the P1 Ethernet port LEDs are
illuminated.

a. If the P1 Ethernet port LEDs are illuminated, perform steps listed in Reboot
System Setup.

4. If the P1 Ethernet port LEDs are not illuminated, do the following:

Check for loose cable connections

a. Check each end of the Ethernet Cable to identify if there is a loose Ethernet
cable connection.

Reconnect cables

a. Disconnect and reconnect the Ethernet cable from the P1 port of the Edge
Server.

b. Disconnect and reconnect the Ethernet cable from the NIC on the Host
Controller.

Try different Ethernet ports

a. Disconnect the Ethernet cable from the P1 port of the Edge Server and connect
that same Ethernet cable into the P2 port on Edge Server.

b. Disconnect the Ethernet cable from port #4 of the NIC on the Host Controller
and connect that same Ethernet cable into port #3 of NIC on the Host
Controller.

Check Ethernet cable for issues

a. Disconnect the Ethernet cable from the P1 port of the Edge Server and connect
that same Ethernet cable into another Ethernet port-enabled device to see if the
other Ethernet port LEDs illuminate or not. This is to confirm the problem is
within the Edge Server rather than within the Host Controller.

Replace Ethernet cable

a. If the above steps determine a faulty Ethernet cable, replace the faulty Ethernet
cable with a known functional Ethernet cable.

Check the NIC
Status using 'ip a'
Command

1. On the Host Workstation, issue the below command on the terminal (Konsole):

$ ip a

2. Check the state of the NIC Card #4 port and ensure the state is "UP," as identified in the
reference example below.

ACS RTDI User Guide
Chapter 7 ACS RTDI Troubleshooting

ACS Edge Server Troubleshooting

v2.3.0, July 2025 375

Check the Edge
Server IP Address 1. On the Host Controller, open the following file:

/var/run/dnsmasq-br-instruments.leases.txt

2. If a line item exists with "advedge-ProLiant-DL360-Gen10" with an associated IP
address, the Edge Server is detected and ready to use.

3. If a line item does not exist with "advedge-ProLiant-DL360-Gen10," follow Reboot
System Setup procedure and check again.

Replace the
Ethernet Cable

To replace the Ethernet cable, follow the steps below:

NOTE: It is recommended that this procedure is performed by Advantest personnel.

1. Disconnect the Ethernet cable from the Host Controller.

2. Open the mini-rack back panel and disconnect the Ethernet cable from the Edge Server.

3. Replace the Ethernet cable with a new cable (Cat6A ONLY).

4. Connect the new cable to the Edge Server and route it out of the mini-rack.

5. Connect other end of the cable to the Host Controller.

6. Secure the cable properly between the Host Controller and Edge Server.

7. Reboot the Edge Server and wait 3 minutes.

8. For connectivity, verify the lights on the Edge Server Ethernet port and on the NIC card
at the rear of the Host Controller.

9. Close mini-rack back panel using the key.

ACS RTDI User Guide
Chapter 7 ACS RTDI Troubleshooting
ACS Unified Server Troubleshooting

376 v2.3.0, July 2025

 ACS Unified Server Troubleshooting
If the Unified Server is not responding, verify whether the server is accessible using the BMC (IPMI) interface before
contacting your Advantest representative. The BMC web interface can be accessed through a browser by entering the
BMC IP address into the URL. Make sure that the web browser is running from a machine within the same network as
the target server’s BMC interface.

If the BMC login page loads, contact your Advantest representative for remote support, as access to BMC is only
allowed by Advantest personnel.

If the BMC login page does not load, follow the procedure below.

Suggestions Procedure

Check BMC IP
Address

1. Connect a keyboard, mouse, and monitor to the target server.

2. Power cycle the server. During boot, press the key to access the system
BIOS.

3. Navigate to the BMC tab.

4. Confirm that "Configuration Address source" is set to [Static], and that the BMC IP
address being used for access validation matches the BMC IP address found from the
system BIOS.

5. If the Configuration Address Source is not set to [Static], set it to [Static] and assign
an IP address that is available for use.

Complete Shutdown 1. Power OFF the server.

2. Unplug the power cord for 5 minutes to completely reset the BMC.

3. Reconnect the power cord to AC power and power ON the server.

4. Attempt to access the BMC login page.

ACS RTDI User Guide
Chapter 7 ACS RTDI Troubleshooting

ACS Container Hub Troubleshooting

v2.3.0, July 2025 377

 ACS Container Hub Troubleshooting
The main issues that may be encountered when connecting to the ACS Container Hub are related to IP Whitelisting and
debugging Docker pull. These issues are addressed below.

 IP Whitelisting
To pull images from ACS Container Hub, a set of IP addresses and whole ranges need to be whitelisted for HTTPS (port
443) communication.

All Docker Registry HTTP API V2 requests are initially served by Container Hub Registry API endpoints. This includes
returning the image manifests. For image layer downloads, the Container Hub Registry instead generates pre-signed
URLs to the associated S3 objects and responds with HTTP 307 to advise clients to download BLOB data directly from
S3, effectively bypassing the proxy.

Container Hub IP Addresses

Container Registry
API Endpoints

AWS S3 Endpoints in
Region us-west-2

(Oregon)

Container Hub
Web Portal

52.12.197.227 3.5.76.0/22 35.163.233.31

54.214.73.203 18.34.244.0/22 54.188.252.161

52.38.194.140 18.34.48.0/20

50.112.153.207 3.5.80.0/21

35.162.83.151 52.218.128.0/17

52.39.85.26 52.92.128.0/17

 35.80.36.208/28

 35.80.36.224/28

To obtain the most recent list of IP ranges, go to:

https://aws.amazon.com/premiumsupport/knowledge-center/s3-find-ip-address-ranges/

As a shortcut, enter the following command in Konsole to pull the IP ranges:

$ curl -s https://ip-ranges.amazonaws.com/ip-ranges.json | jq -r '.prefixes[] |
select(.region=="us-west-2") | select(.service=="S3"

) | .ip_prefix'

NOTE: The above command will automatically download the JSON file that contains all AWS IP address ranges.

You can use the jq tool to parse the JSON file. This tool can be downloaded from https://jqlang.github.io/jq/download/.

https://aws.amazon.com/premiumsupport/knowledge-center/s3-find-ip-address-ranges/
https://jqlang.github.io/jq/download/

ACS RTDI User Guide
Appendix 1. Python Logger, Result, and Event
Logger

378 v2.3.0, July 2025

Appendix 1. Python Logger, Result, and Event
This section describes the code for generating logs, events, and results in a Python-based application using json format.
To install the package, in ACS Edge, you can find the AdvantestLogger.py from the following directory:

oneAPI_py/bin/

Prior to utilizing the package, there is a prerequisite to execute the following in the above directory:

python -m pip install -r requirement.txt

NOTE: The 'EDGE_ID', 'TESTER_ID', 'LOG_FILE_PATH', 'RESULT_FILE_PATH' are defined in the environment
variable of the container created by the Edge Server.

A1.1 Logger
Log is in the following json format:

 {"testerId": "env_tester_id", "edgeId": "env_edge_id", "applicationId": "custom_app",
"timestamp": "1694791374", "level": "INFO", "message": "Log Initializing"}

To get the logger, you must first initialize an instance from Advantestlogger class with an instance name and app name.
Two optional parameters are tester_id and edge_id. If you provide these optional parameters, the output will contain
the provided optional values. Otherwise, these optional values will be retrieved from the environmental variable.

logger = AdvantestLogger("my_app", app="custom_app",
edge_id="custom_edge_id"(optional), tester_id="custom_tester_id"(optional))

After initializing the instance, you can use the log functions with the message you want to generate the log for (info,
debug, error, etc.) in the python logging class.

logger.info("Log Initializing")

The log is stored in the filepath which is specified in the environment variable 'LOG_FILE_PATH'.

A1.2 Result
Result is in the following json format:

 {"testerId": "v93k-1", "edgeId": "Edge-MXQ02006VM", "applicationId": "DPAT",
"timestamp": "1694701266", "key": "new_upper_limit", "value": 10.0}

To get the result, you must first initialize an instance from AdvantestResult class with an instance name and app name.
Two optional parameters are tester_id and edge_id. If you provide these optional parameters, the output will contain
the provided optional values. Otherwise, these optional values will be retrieved from the environmental variable. If the
container is created by the Edge Server, the two environment variables will be available.

ACS RTDI User Guide
Appendix 1 Python Logger, Result, and Event

Event

v2.3.0, July 2025 379

result = ResultLoggerWrapper("result_logger", app="DPAT", edge_id="Edge-
MXQ02006VM"(optional), tester_id="v93k-1"(optional))

After initializing the instance, you can use a function called result() with the message you want and the value of the
result (which is very similar to the info() or error() function in the python logging class) to get the result message.
The result is stored in the filepath which is specified in the environment variable 'RESULT_FILE_PATH'.

A1.3 Event
Event is in the following json format:

 {"testerId": "custom_tester_id", "edgeId": "custom_edge_id", "applicationId":
"custom_app", "timestamp": "1694791374", "eventType": "INFO", "eventName": "event
ends"}

To get the event, you must first initialize an instance from AdvantestEvent class with an instance name and app name.
Two optional parameters are tester_id and edge_id. If you provide these optional parameters, the output will contain
the provided optional values. Otherwise, these optional values will be retrieved from the environmental variable.

event = AdvantestEvent("my_app", app="custom_app",
edge_id="custom_edge_id"(optional), tester_id="custom_tester_id"(optional))

After initializing the instance, you can use a function called event() with the message you want (which is very similar
to the info() or error() function in the python logging class) to get the event message. You can also add custom
labels to add to the event logging.

Example 1

event.event("eventName","event Initializing")

Example 2

custom_labels = {"image_url": "https://registry.advantest.com/image/version"}
event.event("eventName","image downloaded", custom_labels=custom_labels)

For Example 2, the output would be:

{"testerId": "custom_tester_id", "edgeId": "custom_edge_id", "applicationId":
"custom_app", "timestamp": "1694701769", "eventType": "INFO", "eventName": "image
downloaded", "image_url": "https://registry.advantest.com/image/version"}

The event is stored in the filepath which is specified in the environment variable.

ACS RTDI User Guide
Appendix 2 Application Descriptor Command Line Tool
acs-application Command Line Tool Requirements and Path

380 v2.3.0, July 2025

Appendix 2. Application Descriptor Command Line Tool
Application Descriptors contain information for ACS Nexus to auto-deploy applications onto the ACS Edge Server
without the need to modify the test program. They are required for running ACS Nexus in auto-deploy mode. Application
Descriptors encode which container images must be pulled and started as containers. They can also include additional
configuration options per container, such as environment variables or monitoring configuration properties.

Application Descriptors are managed on ACS Container Hub alongside container images. In production, Application
Descriptors and container images are replicated from ACS Container Hub to the ACS Unified Server, from where they
are provided locally to test cells that have ACS Nexus and ACS Edge enabled.

Technically, Application Descriptors are machine-readable files stored in JSON format. These descriptors are
conventionally created and managed using the ACS Container Hub web interface. However, acs-application is a
command line tool that provides an alternative for managing Application Descriptors outside of the ACS Container Hub.

A2.1 acs-application Command Line Tool Requirements and Path
System Requirement:

• Linux on x86_64

The acs-application command line tool is distributed as a single, self-contained executable binary file. It is installed on
the workstation which is used for developing and building the container images. Request the latest version from your
Advantest technical contact and copy it to a location in your PATH.

$ sudo cp ./acs-application /usr/local/bin/acs-application

ACS RTDI User Guide
Appendix 2 Application Descriptor Command Line Tool

Application Descriptor Format

v2.3.0, July 2025 381

A2.2 Application Descriptor Format
To manage Application Descriptors using the acs-application command line interface, users will need to work with the
JSON format directly. Below is the Application Descriptor schema (V1) presented within the JSON schema
specification.

{
 // REQUIRED: Application Descriptor format version. Must be "1".
 "version": "1",
 // REQUIRED: Application Descriptor name. Customer-defined, used for display and logging.
 "name": "My Application XYZ v2",
 // REQUIRED: Unique information to resolve this application descriptor before lot start
 "selector": {
 // REQUIRED: Device name as defined by test program
 "device_name": "my_device_folder_name",
 // REQUIRED: product family as defined by test program or "*" to match any
 "product_family": "*",
 // REQUIRED: test program name as defined by test program or "*" to match any
 "test_program_name": "*",
 // REQUIRED: test program revision as defined by test program or "*" to match any
 "test_program_revision": "*"
 },
 // REQUIRED: Describes runtime configuration for ACS Edge
 "edge": {
 // REQUIRED: List of containers to be started. Exactly 1 container is supported.
 "containers": [
 {
 // REQUIRED: Name of container on ACS Edge
 "name": "mycontainer",
 // REQUIRED: Image reference; local to registry.advantest.com
 "image": "myorg-myproject/myrepo:v1",
 // OPTIONAL: ACS Edge server requirements
 "requirements": {
 // OPTIONAL: Should GPU be enabled for this container? Default: false
 "gpu": false
 },
 // OPTIONAL: Environment variables that are passed into the container
 "environment": {
 "VARNAME": "value"
 },
 // OPTIONAL: Must be set if Prometheus scrape endpoint has different port and/or path
than default
 "metrics": {
 // OPTIONAL: Port to scrape metrics. Default: 9001
 "port": 9001,
 // OPTIONAL: Path to scrape metrics at. Default: /metrics
 "path": "/metrics"
 }
 }
]
 }
}

ACS RTDI User Guide
Appendix 2 Application Descriptor Command Line Tool
Application Descriptor Format

382 v2.3.0, July 2025

A2.2.1 Application Descriptor Selector
The selector of any Application Descriptor is a crucial element. It defines how the right Application Descriptor is
determined by ACS RTDI when running on a test floor.

The selector attribute device_name is a mandatory selector attribute and must have a concrete value that is exactly
matched during production. All other attributes such as test_program_name, product_family and
test_program_revision may be set to a wildcard value (*), which will match any concrete value coming from the
test cell in production.

Every selector attribute combination can only exist once among all application descriptors. An acs-application
create command or acs-application update command that would result in a duplicate selector is not allowed and
will result in an error.

CAUTION: Make sure that your released Test Program and Application Descriptor make a perfect match. Otherwise, it
is technically possible to create application descriptors with different selectors that lead to ambiguous
matches during Application Descriptor selection in production. Take the following example for 2
application descriptors:

Descriptor #1 Selector Descriptor #2 Selector
Device name: my_device Device name: my_device

Product family: my_product Product family: ANY

Test program name: TestProgram_1 Test program name: TestProgram_1

Test program revision: ANY Test program revision: v1

In the above scenario, the test program in production would emit the following attributes:

• Device name: my_device
• Product family: my_product
• Test program name: TestProgram_1
• Test program revision: v1

In this example scenario, both descriptors match, because each selector matches the device name and 2
other attributes. This is an error condition in production, and a proper descriptor selection cannot be made.
To avoid this type of condition, specify as many selector attributes as possible in the application descriptor.
If a descriptor shall be useable for multiple products and/or test programs, make sure to not create an
ambiguous situation as presented in the above example.

The acs-application command-line interface reads application descriptors from JSON files. When creating a new
descriptor, create a new JSON file first, such as "appdesc-my_application.json." The next page illustrates an example for
creating a new descriptor.

ACS RTDI User Guide
Appendix 2 Application Descriptor Command Line Tool

Application Descriptor Format

v2.3.0, July 2025 383

Application Descriptor Example

{
 "version": "1",
 "name": "Test",
 "selector": {
 "device_name": "my_device_folder_name",
 "product_family": "*",
 "test_program_name": "*",
 "test_program_revision": "*"
 },
 "edge": {
 "containers": [
 {
 "name": "app",
 "image": "customer-myproject/app:latest",
 "requirements": {
 "gpu": true
 },
 "environment": {
 "VARNAME": "value"
 },
 "metrics": {
 "port": 1234,
 "path": "/prometheus"
 }
 }
]
 }
}

ACS RTDI User Guide
Appendix 2 Application Descriptor Command Line Tool
acs-application Command Line Tool General Information

384 v2.3.0, July 2025

A2.3 acs-application Command Line Tool General Information
The table below contains a list of available commands used with the acs-application command line tool. To enter a
command, enter the following in the command line:

acs-application [command]

Commands and Flags Description

create Create an application descriptor on ACS Container Hub.

delete Delete application descriptor(s) on ACS Container Hub.

get Get application descriptor contents from ACS Container Hub.

help Receive help about any command.

list List application descriptors on ACS Container Hub.

query Query application descriptor on ACS Container Hub.

update Update application descriptor on ACS Container Hub.

validate Validate application descriptor JSON files.

version Print the current version of the acs-application tool.
This is helpful for troubleshooting and when contacting Advantest for support if
acs-application issues are encountered.

--debug Outputs verbose log messages.

-h / --help Receive help for acs-application tool.
Enter "acs-application [command] --help" for more information
regarding usage and flags for a command.

--trace Outputs extremely verbose log messages.

-v / --verbose Outputs log messages.

ACS RTDI User Guide
Appendix 2 Application Descriptor Command Line Tool

acs-application Command Line Tool General Information

v2.3.0, July 2025 385

A2.3.1 Authentication
The acs-application tool commands that work with the ACS Container Hub require an Organization ID and according
authentication information. Most commonly, a username/password combination is required to authenticate at a registry.
If the acs-application tool is used directly with the mirror container registry on the ACS Unified Server, an additional
client certificate is required to perform mTLS (mutual Transport Layer Security) authentication.

Tool Option Description

-o / --org-id The ID of your ACS Container Hub Organization. You find this in the Customer
Portal user menu (see Figure 3-7). as the prefix for all of your projects and client
credentials.
For example, if your Organization is "Example Corp.," when you log in on the
ACS Container Hub web interface, you find a list of projects such as:

• exa
• exa-app-1
• exa-app-2

 In this case, "exa" is your Organization ID.
If you work against a local registry, this must be the namespace (project name)
where Application Descriptors are stored.

-u / --username Your myAdvantest email address (for example "john.doe@example.com") or
the name of a client credential (for example "access+exa-mycredential").

-p / --password Your Docker secret or the secret of a client credential.
You can leave this parameter out if you do not want to reveal your password in
your shell history. In that case acs-application will prompt for the password,
similar as the docker login command does.

The credentials described in the table below may be used with the ACS Container Hub. To create an Application
Descriptor, you must be an Organization Administrator and must use your personal account with Docker secret.

Type Source Required Permissions

Docker secret myAdvantest email address / Docker secret copied from
the ACS Container Hub Customer Portal.
(These are the same credentials used for docker login.)

Organization Admin

Client Credential Name/secret of a Container Hub Client Credential.
Works only with read commands (list, get, query).

Must have pull permission for
the [organization-id] project

ACS RTDI User Guide
Appendix 2 Application Descriptor Command Line Tool
Command Usage and Examples

386 v2.3.0, July 2025

A2.3.2 Trusted TLS Certificates
By default, the acs-application command line tool uses HTTPS connections to connect to container registries. It verifies
the server certificate and only establishes a connection if the server certificate is trustworthy. For verification, the tool
relies on the trusted certificates that are stored on the operating system.

If you require to connect to a registry with a self-signed or otherwise untrusted certificate, you must import the server
certificates into the trusted certificate list of your operating system to connect to container registries.

A2.4 Command Usage and Examples
This section describes the available acs-application tool commands and provides examples.

A2.4.1 List Command
The list command lists metadata for all Application Descriptors. Metadata includes ID, name, selector, and additional
attributes. Command output is in JSON format per Application Descriptor.

List Command Example

$ acs-application list -o exa -u john.doe@example.com
Password: [... paste or type secret ...]
{
 "id": "06a643ff-7948-4c24-b9ec-8a2290a385d6",
 "name": "My Application 1",
 "creator": "john.doe@example.com",
 "creation_date": 1695198731522,
 "last_update_date": 1695198731522,
 "selector": {
 "device_name": "my_device_name",
 "product_family": "*",
 "test_program_name": "*",
 "test_program_revision": "*"
 }
}

ACS RTDI User Guide
Appendix 2 Application Descriptor Command Line Tool

Command Usage and Examples

v2.3.0, July 2025 387

A2.4.2 Get Command
The get command retrieves a specific Application Descriptor. To get a specific Application Descriptor you must first
know its ID. You can get the ID using the list or query command. The ID is also printed for every newly created
Application Descriptor. Command output is the full Application Descriptor JSON.

Get Command Example

$ acs-application get -o exa -u john.doe@example.com 06a643ff-7948-4c24-b9ec-
8a2290a385d6
Password: [... paste or type secret ...]
{
 "version": "1",
 "name": "My Application 1",
 "selector": {
 "device_name": "my_device_name",
 "product_family": "*",
 "test_program_name": "*",
 "test_program_revision": "*"
 },
 "edge": {
 "containers": [
 {
 "name": "app-container-1",
 "image": "exa-app-1/edge-app:v1.0",
 "requirements": {}
 }
]
 }
}

ACS RTDI User Guide
Appendix 2 Application Descriptor Command Line Tool
Command Usage and Examples

388 v2.3.0, July 2025

A2.4.3 Query Command
The query command simulates the Application Descriptor lookup during production test. You must know the exact
selector attributes that are going to be sent by ACS Nexus to find the Application Descriptor for the current test program.
Command output is the Application Descriptor ID.

Query Command Example

$ acs-application query -o exa -u john.doe@example.com device_name=my_device_name
Password: [... paste or type secret ...]
Result: 06a643ff-7948-4c24-b9ec-8a2290a385d6

You can also request the full JSON by specifying the --print-json option:

$ acs-application query -o exa -u john.doe@example.com --print-json
device_name=my_device_name
Password: [... paste or type secret ...]
Result: 06a643ff-7948-4c24-b9ec-8a2290a385d6

{
 "version": "1",
 "name": "My Application 1",
 "selector": {
 "device_name": "my_device_name",
 "product_family": "*",
 "test_program_name": "*",
 "test_program_revision": "*"
 },
 "edge": {
 "containers": [
 {
 "name": "app-container-1",
 "image": "exa-app-1/edge-app:v1.0",
 "requirements": {}
 }
]
 }
}

ACS RTDI User Guide
Appendix 2 Application Descriptor Command Line Tool

Command Usage and Examples

v2.3.0, July 2025 389

A2.4.4 Validate Command
Creating Application Descriptors manually can be error-prone. You can use the validate command to validate your
JSON file for syntactical and semantic correctness before creating it.

If the file is valid, the command output is: OK: <Application Descriptor Name>

Validate Command Example (valid file)

$ acs-application validate ./path/to/my-appdesc.json
OK: Test

If the file is invalid, the validation error is printed. For the example below, an invalid selector is detected:

Validate Command Example (invalid file)

$ acs-application validate ./path/to/my-appdesc.json
Error: validation failed - [invalid_descriptor] missing or empty selector:
"device_name"

A2.4.5 Create Command
The create command creates a new Application Descriptor. New Application Descriptors are created from JSON files
that need to be prepared upfront. Command output is the ID of the newly created descriptor.

Create Command Example

$ acs-application create -o exa -u john.doe@example.com ./path/to/my-appdesc.json
Password: [... paste or type secret ...]
Created: 06a643ff-7948-4c24-b9ec-8a2290a385d6

A2.4.6 Delete Command
The delete command removes obsolete Application Descriptors from the ACS Container Hub using the descriptor ID.

Delete Command Example

$ acs-application delete -o exa -u john.doe@example.com 06a643ff-7948-4c24-b9ec-
8a2290a385d6
Password: [... paste or type secret ...]
Deleted: 06a643ff-7948-4c24-b9ec-8a2290a385d6

ACS RTDI User Guide
Appendix 2 Application Descriptor Command Line Tool
Exit Codes

390 v2.3.0, July 2025

A2.4.7 Update Command
The update command is used to modify existing Application Descriptors. For example, the command can be used to
change the descriptor's selector attributes, update the container image tag, or specify additional container environment
variables. Typically, you would start by retrieving the desired Application Descriptor and storing it as a JSON file (as
shown in Example 1), which you then modify (as shown in Example 2).

Update Command Example 1

$ acs-application get -o exa -u john.doe@example.com --output-file ./path/to/my-
appdesc.json 06a643ff-7948-4c24-b9ec-8a2290a385d6

Password: [... paste or type secret ...]

Written: ./path/to/my-appdesc.json

Then modify my-appdesc.json and update it on the ACS Container Hub:

Update Command Example 2

$ acs-application update -o exa -u john.doe@example.com 06a643ff-7948-4c24-b9ec-
8a2290a385d6 ./path/to/my-appdesc.json

Password: [... paste or type secret ...]

Updated: 06a643ff-7948-4c24-b9ec-8a2290a385d6

A2.5 Exit Codes
When using the acs-application command line tool, the command-line interface returns different exit codes depending on
the success of an operation or the category of an error. The table below lists and describes the exit codes used.

Exit Code Description

0 Operation successful.

1 There was a user error. For example, invalid or missing option or argument.

2 A system error occurred. For example, a network communication error with the container registry.

101 Validation error. A provided Application Descriptor is invalid.

102 Registry error. The container registry returned an error. For example, invalid credentials were used.

ACS RTDI User Guide
Appendix 3 Azure Hosted Container Registry

v2.3.0, July 2025 391

Appendix 3. Azure Hosted Container Registry
To support customers who prefer services to be hosted on Azure Cloud, a Container Registry is set up on Azure. The
location of the container registry is harbor.az.unified.advantest.com.

The sample docker CLI commands are listed below:

Docker Login
harbor.az.unified.advantest.com --username username@advantest.com

Docker Build and Push
docker build: --tag harbor.az.unified.advantest.com/advtesting-azure-project1/advtesting-azure-repository:latest
docker push: harbor.az.unified.advantest.com/advtesting-azure-project1/advtesting-azure-repository:latest

Docker Tag and Push
docker tag: localImageName1 harbor.az.unified.advantest.com/advtesting-azure-project1/advtesting-azure-

repository:latest

docker push: harbor.az.unified.advantest.com/advtesting-azure-project1/advtesting-azure-repository:latest

Docker Pull
harbor.az.unified.advantest.com/advtesting-azure-project1/advtesting-azure-repository:latest

	1. Introduction
	2. ACS Nexus
	2.1 Collecting Real Time Test Cell Data
	2.2 Controlling the Test Cell
	2.2.1 Basic Control
	2.2.2 Advanced Control
	2.2.2.1 Bin Control
	2.2.2.1.1 Test Program Configuration (Bin Control)
	2.2.2.1.2 Bin Control Configuration

	2.2.2.2 Site Activity Control

	2.3 OneAPI C++ SDK
	2.3.1 General Information
	2.3.2 Usage Scenario
	2.3.3 C++ API
	2.3.3.1 class oneapi::Interface
	2.3.3.2 class oneapi::Monitor
	2.3.3.3 enum oneapi::DataType
	2.3.3.4 class oneapi::NexusData
	2.3.3.4.1 Function Introduction

	2.3.3.5 class oneapi::Command
	2.3.3.6 class oneapi::AppInfo
	2.3.3.7 class oneapi::QueryResponse
	2.3.3.8 class oneapi::DFFData
	2.3.3.9 class oneapi::TestCell

	2.3.4 Configuration

	2.4 OneAPI Python SDK
	2.4.1 General Information
	2.4.2 Usage Scenario
	2.4.3 Python API
	2.4.3.1 class Interface
	2.4.3.2 class Monitor
	2.4.3.3 enum DataType
	2.4.3.4 class NexusData
	2.4.3.4.1 Function Introduction

	2.4.3.5 class Command
	2.4.3.6 class AppInfo
	2.4.3.7 class QueryResponse
	2.4.3.8 class DFFData
	2.4.3.9 class DFF
	2.4.3.10 class TestCell

	2.4.4 Configuration

	2.5 Supporting Containerized Application on the ACS Edge and ACS Unified Servers
	2.5.1 Nexus Configuration File
	2.5.2 Auto Deploy Mode
	2.5.3 Non-Auto Deploy Mode (Auto Deploy Mode Disabled)
	2.5.4 Container Configuration File
	2.5.5 Workflow

	2.6 Supporting Application on the Host Controller
	2.6.1 Nexus Configuration File
	2.6.2 Application Configuration File
	2.6.3 Workflow

	2.7 ACS Nexus GUI
	2.8 STDF Replay
	2.9 Data Replay Tool
	2.10 FAST-API Support on ACS Edge
	2.10.1 Configuration
	2.10.1.1 Nexus Query Application Description File
	2.10.1.2 Nexus Configuration

	2.10.2 Access FAST-API Service

	2.11 ACS Edge Redundancy Support
	2.11.1 Usage Cases
	2.11.2 Configuration
	2.11.3 Gateway

	2.12 Bi-Directional Communication between TP and RTDI Application
	2.12.1 NexusTPI
	2.12.1.1 NexusTPI for SMT8
	2.12.1.2 NexusTPI for SMT7

	2.12.2 OneAPI
	2.12.2.1 Sending Data from the Test Program to RTDI Application
	2.12.2.2 Test Program Invoking Request to RTDI Application

	2.13 Data Feed Forward
	2.13.1 Data Writing - NexusData
	2.13.2 Data Writing – Customer Data from the Application
	2.13.3 Data Reading – By Application
	2.13.4 Data Writing – Customer Data from Test Program
	2.13.4.1 Load and Register Schema
	2.13.4.2 Set Properties
	2.13.4.3 Upload Data
	2.13.4.4 Register User-Defined Callback Function

	2.13.5 Data Reading – by Test Program
	2.13.5.1 Query Job-ID
	2.13.5.2 Get Job Result

	2.14 Configurable Nexus Services
	2.15 Nexus License Check Modes

	3. ACS Container Hub
	3.1 ACS Container Hub Registration
	3.1.1 Prerequisite
	3.1.2 Registering myAdvantest Accounts

	3.2 Connecting ACS Container Hub to an ACS Unified Server
	3.2.1 Creating Client Credential for Replication

	3.3 ACS Container Hub User Interface
	3.3.1 Log In to ACS Container Hub
	3.3.2 Log in to Docker Command Line
	3.3.3 Docker Build and Push
	3.3.4 Docker Pull
	3.3.5 Tag Existing Local Image
	3.3.6 Project Search
	3.3.7 Create a New Project
	3.3.8 Change Project Storage Quota
	3.3.9 Delete a Project
	3.3.10 Project Repository and Artifacts
	3.3.11 Delete Artifact
	3.3.12 Delete Image Tag
	3.3.13 Delete Repository
	3.3.14 Create Client Credentials
	3.3.15 Update Client Credentials
	3.3.16 Delete Client Credential
	3.3.17 Reset Client Credential
	3.3.18 Create 1:1 Application Descriptor
	3.3.19 Update 1:1 Application Descriptor
	3.3.20 Delete 1:1 Application Descriptor
	3.3.21 Multi-User Permissions for Managing App Descriptors or Organization Project
	3.3.22 Using Multi-User Permissions
	3.3.23 Support for 1:N Applications
	3.3.24 Viewing 1:N Application Status
	3.3.25 Viewing, Creating, and Editing 1:N Application Descriptors
	3.3.26 Test Applications for 1:N Application Descriptors
	3.3.27 Monitoring – Alert Subscriptions
	3.3.28 Replication

	4. ACS Edge Server
	4.1 ACS Edge Server Operation
	4.1.1 Operation Overview
	4.1.2 Monitoring the ACS Edge Server

	4.2 ACS Edge Server Features
	4.2.1 Security
	4.2.2 Accessibility
	4.2.3 Functionality
	4.2.4 Redundancy
	4.2.5 Remote Service Upgrade

	4.3 ACS Edge Server Specifications

	5. ACS Unified Server
	5.1 Container Registry
	5.2 Licensing
	5.3 Monitoring
	5.3.1 Logs
	5.3.2 Application Results
	5.3.3 System Metrics
	5.3.4 Events
	5.3.5 Monitoring Dashboards
	5.3.5.1 Dashboards Inventory
	5.3.5.2 Grafana Tutorials

	5.4 Dynamic Certificates for MTLS
	5.5 Application Support
	5.5.1 Container Hub Method
	5.5.2 SFTP Method
	5.5.3 1:N Application Descriptors

	5.6 Unified Server Application Testing
	5.6.1 Customer API via CLI

	5.7 File Synchronization
	5.7.1 Overview
	5.7.2 acsdata-cli Command Line Tool Requirement and Path
	5.7.3 acsdata-cli Commands

	5.8 Redis Memory Store SDK for Cross-Cluster Replication
	5.8.1 Using the SDK in your Application
	5.8.2 Configuring Replication
	5.8.3 Resolving Conflicts from Concurrent Redis Key Updates Across Clusters
	5.8.4 Impact of Network Disruptions between Cross-Site UnifiedServer Clusters
	5.8.5 Allowed Redis Value Size
	5.8.6 MemoryStore Class Methods

	5.9 Data Feed Forward
	5.9.1 Overview
	5.9.2 Data CLI Tool Requirement
	5.9.3 Data CLI Commands
	5.9.3.1 Get Commands
	5.9.3.2 List Commands
	5.9.3.3 Create Command
	5.9.3.4 Delete Command

	5.9.4 DFF UI
	5.9.4.1 Rules
	5.9.4.2 Data Transfers
	5.9.4.3 Schemas
	5.9.4.4 Admin
	5.9.4.5 Notifications

	6. C++ Client API Reference
	6.1 ACSEdgeConn
	6.1.1 Public Functions

	6.2 ContainerConfig
	6.2.1 Public Function

	6.3 ACSEDGEcode
	6.4 Establishing Connection to the ACS Edge Server
	6.5 Container Deployment Example

	7. ACS RTDI Troubleshooting
	7.1 ACS Edge Server Troubleshooting
	7.2 ACS Unified Server Troubleshooting
	7.3 ACS Container Hub Troubleshooting
	7.3.1 IP Whitelisting
	Appendix 1. Python Logger, Result, and Event
	A1.1 Logger
	A1.2 Result
	A1.3 Event

	Appendix 2. Application Descriptor Command Line Tool
	A2.1 acs-application Command Line Tool Requirements and Path
	A2.2 Application Descriptor Format
	A2.2.1 Application Descriptor Selector

	A2.3 acs-application Command Line Tool General Information
	A2.3.1 Authentication
	A2.3.2 Trusted TLS Certificates

	A2.4 Command Usage and Examples
	A2.4.1 List Command
	A2.4.2 Get Command
	A2.4.3 Query Command
	A2.4.4 Validate Command
	A2.4.5 Create Command
	A2.4.6 Delete Command
	A2.4.7 Update Command

	A2.5 Exit Codes

	Appendix 3. Azure Hosted Container Registry

